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Motivation

cooperating population invading a 1D-habitat

competition ‘ cooperation (or Allee effect)

individuals compete for collective defence against predators

resources difficulty to find a mate at low densities

internal mechanisms driving the invasion

cooperation vs. competition =- phase transition 7

genealogical structure of the population ?




Monostable RD Equations: u(t,x) € [0, 1] = density of individuals
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UtIEUxx+ with f(u):iu(lfu)(lJr u)

cooperation in the PDE
the per capita growth rate ﬁuﬂ is maximal at intermediate densities
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Convergence to travelling wave solutions: if u(0,x) = 1,9, for t > 1
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Pulled and pushed fronts two classes of travelling fronts Stokes '76

b = %uxx +f(u) with fu) = %u(l —u)(1+ Bu)

pulled fronts ¢ = /2f'(0) ‘ ‘ pushed fronts ¢ > /21’(0) ‘

speed as the linearised equation  faster than pulled fronts

1
Up = 5 e + (0)u

First phase transition: 5 large enough = acceleration of the fronts

1.16 4

— pulled L7

1149 ——— pushed et
=~ 112 //
gt -
[§] L
< 110 .
9] e
g x
2 1087 -
c e
© 1.06 s
3
S .
2 1044 Rl

//,
1.02 o
f”
1.00 --"




1.01

0.8

0.6 1

0.4 1

0.2

0.0

— front ¢

--- per cap. growth rate f(¢)/¢
Bl bulk u=1

I leading edge, u=0

P e e

_C>
-20 ~10 10 20 30 40 50
X
strength of the cooperation | B € (0,2) B>2
type of invasion pulled pushed
speed ¢ c=/2f"(0) | ¢ > +/2f'(0)




B=1.5
101 —— front @
-=-= per cap. growth rate f(g)/p
081 Il bulk ux<1
I |eading edge, u=0
0.6 1
0.4
0.2 —
0.0 1
—20 ~10 0 10 20 30 40 50
X
strength of the cooperation | B € (0,2) B>2
type of invasion pulled pushed
speed ¢ c=/2f"(0) | ¢ > +/2f'(0)




1.01

0.8

0.6 1

0.4 1

0.2

0.0

———————

— front ¢

--- per cap. growth rate f(¢)/¢
Bl bulk u=1

I leading edge, u=0

_C>
-20 ~10 0 10 20 30 40 50
X
strength of the cooperation | B € (0,2) B>2
type of invasion pulled pushed
speed ¢ c=/2f"(0) | ¢ > +/2f'(0)




Questions:
1. Where are the particles leading the invasion and thus the
evolutionary dynamics ?

2. Sample an individual at the tip of the invasion front at time T.
Where is its ancestor at time T —t ?

3. Same question for two individuals sampled at time t and their
MRCA.

(?) at the leading edge in pulled fronts,

(?) in the bulk for pushed fronts.
~ Not so simple !

4. Genealogical structure of k ind. sampled at the tip of the front ?



A third class of monostable invasions Birzu et al. '18

Effect of demographic fluctuations on the fronts arising from

demographic fluctuations

—_—
W(t,x) ,

1 1
Up = 7 U + Eu(l —u)(1+ Bu) +

N: local density of individuals

u
N

X;: position of the front

Numerical observations:

((X¢ — ct)?) = a*(N)t

| Alleeeffect | Be€(0,2) | Be(24) | B>4
’ in the PDE ‘ pulled waves ‘ pushed waves
variance o2 log(N)=3 | N1=% a€(1,2) N1
time scale log(N)3 NE—1 N
in the SPDE pulled semi pushed
effect fluctuations very sensitive CLT

B=0 : Brunet, Derrida, Mueller, Munier '06



Microscopic model for invasion fronts capturing

(?) the internal mechanisms leading to this second phase transition ?

(?) the genealogical structure at the tip ?

Bolthausen-Sznitman Beta(2 — o, @), Kingman
a=1 a€(1,2) =2
(?) pulled (?) semi pushed (?) fully pushed

B = 0, Brunet, Derrida,
Mueller, Munier '06

Picture by F. Boenkost

Birzu et al. '20 10



A toy model
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A toy model

— rx),p=4
751 L 1/2
150 —— killing boundary
1.25 bulk
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Dyadic branching Brownian motion with absorption at 0 with

o space-dependent branching rate r(x):
1 p-1

r(x) = 5 + 5 1icpo1s

p strength of the cooperation

o negative drift —/(p) chosen such that the number of particles stays
roughly constant

1t speed of the wave



The case p=1

For p=1, (speed of pulled waves)
Z: = number of particles in the moving frame at time t
At t = 0, the system starts with =~ N particles in a stable configuration

Let Zt = Zt/N

Theorem (demographic fluctuations)

(Zlog(N)3t)f>0 converges to Neveu’s Continuous-state branching pro-
cess (CSBP) as N — oc.

(i) time scale of the fluctuations for B = 0 in the SPDE.

(ii) Genealogy associated to Neveu's CSBP = Bolthausen—Sznitman coal.

Theorem (genealogy)

The genealogy of the BBM is given by a Bolthausen—Sznitman coales-
cent on the time scale log(N)?
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[0 Can we obtain a similar result on Z; for p > 1 ?

[0 Genealogy of the BBM ?
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The pulled and pushed regimes in the particle system

Density of particles in the system:

mass loss

—_——~

) vi(x)va(y)dy,

where (A1, v1) are the principal e.v. of the Sturm—Liouville problem

A
t>1, p(x,y)dy =~ et e(‘ ‘

%u” + 1)2;11[0,1]u =Au, u(0)=u(L)=0, L— .

~ A1 = Ai(p) quantifies the growth of the system = we set

u:\/1+2/\1

Pulled /pushed regime.

1. if p < p1, Ai(p) = 0 (pulled)
2. if p>p1, Ai(p) >0and Ay 7 7 w. r. t. p (pushed)
in this case, vi(x) o e~ VI 1% 5 ¥ oo,
notation: B = /2 —1 (decay of the first e.v.)




The semi pushed regime in the particle system

Assume that the system starts with NV particles at 1.

7y = % rescaled number of particles in the system

_ 5 VA et TR
a=alp)= o= = s

The semi-pushed regime (T. '22)

There exist p1 < p2 such that for all p € (p1, p2),
1. the exponent « is increasing and a(p;) = i
2. (Zyo-14)e0 converges (f.d.d.) to an a-stable CSBP.

Conjectures

fp<pr(p=1 a=1), (4

log

if p>p2 (1> 3v2, a>2), (Zut)e>0 = Feller diffusion

(N)3t)l’>0 = Neveu's CSBP

Remark a-stable CSBP < time changed Beta(2 — «, «)-coalescent

time change T := [;(X:)'™®, T7'(t) =inf{s > 0: T, > t} (X, a-stab.)
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Remarks pe(x,y)~ e wvi(x) x e "w(y)
—_———

reproductive value h(x)  stable configuration h(y)

vuly)~e ™, B=\/12-1

stable configuration in the BBM

—— killing boundary
bulk

- =

front solution in the PDE

— front
<.
in the BBM in the (S)PDE
stable configuration | h(y) oc e 8 | p(y) ~ e (VLY
« semi pushed a= 8 o= SVt
n—> c—y/c2-1




Remarks

drift
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Idea of the proof:

Berestycki, Berestycki, Schweinsberg (p = 1) '13: Set L(N) s.t. E.[Z,] =1

Pu(Z; > 2) ~ a2t

leading edge

log(N)?

pulled

19



Idea of the proof:

Berestycki, Berestycki, Schweinsberg (p = 1) '13: Set L(N) s.t. E.[Z,] =1

Pu(Z; > 2) ~ a2
L(N) —T

leading edge

semi-pushed

1 1+ ” r
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Idea of the proof:

Berestycki, Berestycki, Schweinsberg (p = 1) '13: Set L(N) s.t. E.[Z,] =1

leading edge

N part.

0 bulk ot

fully pushed

19



The fully pushed regime o > 2

Method of moments

Kolmogorov estimate (Schertzer-T. '23)

)

NPy (Zy: > 0) — Lx)t N = co. h(x) = e’ vy (x)

Remark =~ Kolmogorov estimate for multi-type GW processes
Ex[Z] & %h(x) = h(x) reproductive value of a part. located at x

“reproductive variance”

Yaglom law (Schertzer-T. '23)

Starting from 1 part. at x, conditional on survival,
Zn: = & (& standard exponential distribution)

Remark multi-type GW, Feller diffusion



The fully pushed regime o > 2
For 2 particles u, v alive at time t,

di(u, v) := time to the MRCA |v A u|

At t = 0, the system starts with a single particle at x > 0.

Genealogy (Schertzer-T. '23)

Conditional on {Zn > 0}, sample k individuals in the BBM at time
tN denoted by (w1, ..., k).

The distance matrix
1
(et )

converges to that of a critical GW process with finite variance
conditioned on surviving up to a large time.

Remark: only binary mergers

21



Moments of the BBM for o > 2

spine = path of an immortal particle:

stationary distribution hh = (v1)?

(Doob h-transform)
moments:

1

EZ) = (K1 </ E)K

» Reminder: vi(z) = e %7 (z > 1), h(z) = e**vy(z) and o = ‘f+B

(...) integral on the branching point of the genealogical tree

oc/e(’“w)zdz<oo = pu<3p <= a>2.
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Moments of the BBM for o > 2

B 1 Z2 K—1
E 2] ~ FhOOKIE <2>

Kolmogorov estimate Py (Z; > 0) ~ fzz@

—(K) = 72\ ¥
E.[Z|Z, > 0] ~ KI (2>

. . 2
= moments of an exponential rv with parameter %t
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The semi pushed regime a € (1,2)

K-1

(...) integral on the branching point of the genealogical tree

o</e(“*35)zdz<oo = pu<38 = a>2

@ o > 2: the branching points are concentrated around 0
@ ¢ € [1,2): the branching points are at +0o

Cut-off method

The genealogy of the BBM coincides with that of an a-stable CSBP.

24



Conclusion

Questions: Sample an individual at the tip of the invasion front at time
T. Where is its ancestor at time T — t 7 Same question for two
individuals sampled at time t and their MRCA.

path of an immortal particle

@ o> 1 (p> 1) pushed regime

stat. distribution ‘qt(x,y) ~ v (y)? ~ e 2Py ‘With B=+u2-1
= in the bulk

@ =1 (pu=1) pulled regime
no stationary distribution = at the leading edge

position of the branching points in the genealogical tree

@ o > 2 fully pushed regime

Y2 < o0 = in the bulk

@ o €[1,2) pulled and semi pushed regimes
Y2 =00 w at the leading edge
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Conclusion

pulled semi-pushed | fully pushed
PDE pulled pushed
invasion speed c= c=c(B)>1
time scale log(N)3 NE—1 N

time scale log(N)3 Nt N
drift w=1 w=p(p)>1
exponent a=1 a€(1,2) oa>2

limiting CSBP Neveu (?) a-stable Feller
evolutionary dyn. at the leading edge in the bulk
driven by part.... Y2 = +o0 Y2 < o0
path of an far to the right in the bulk
immortal part. no stat. distribution V2(x) ~ e72x
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