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Motivation

 cooperating population invading a 1D-habitat

competition cooperation (or Allee e↵ect)

individuals compete for collective defence against predators

resources di�culty to find a mate at low densities

 internal mechanisms driving the invasion

cooperation vs. competition ) phase transition ?

 genealogical structure of the population ?
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Monostable RD Equations: u(t, x) 2 [0, 1] = density of individuals

ut =
1

2
uxx + f (u) with f (u) =

1

2
u(1� u)(1 + Bu)

cooperation in the PDE

the per capita growth rate f (u)
u is maximal at intermediate densities

B= strength of the cooperation 2



Convergence to travelling wave solutions: if u(0, x) = 1x<0, for t � 1

u(t, x) ⇡ '(x � ct + x0)

c speed of invasion Macroscopic dynamics

' limiting profile of the invasion of the invasion
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Pulled and pushed fronts two classes of travelling fronts Stokes ’76

ut =
1

2
uxx + f (u) with f (u) =

1

2
u(1� u)(1 + Bu)

pulled fronts c =
p

2f 0(0)

speed as the linearised equation

ut =
1

2
uxx + f 0(0)u

pushed fronts c >
p
2f 0(0)

faster than pulled fronts

First phase transition: B large enough ) acceleration of the fronts
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strength of the cooperation B 2 (0, 2) B > 2

type of invasion pulled pushed

speed c c =
p
2f 0(0) c >

p
2f 0(0)
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strength of the cooperation B 2 (0, 2) B > 2

type of invasion pulled pushed

speed c c =
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2f 0(0)
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strength of the cooperation B 2 (0, 2) B > 2

type of invasion pulled pushed

speed c c =
p
2f 0(0) c >

p
2f 0(0)
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Questions:

1. Where are the particles leading the invasion and thus the

evolutionary dynamics ?

2. Sample an individual at the tip of the invasion front at time T .

Where is its ancestor at time T � t ?

3. Same question for two individuals sampled at time t and their

MRCA.

(?) at the leading edge in pulled fronts,

(?) in the bulk for pushed fronts.

 Not so simple !

4. Genealogical structure of k ind. sampled at the tip of the front ?
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A third class of monostable invasions Birzu et al. ’18

E↵ect of demographic fluctuations on the fronts arising from

ut =
1

2
uxx +

1

2
u(1� u)(1 + Bu) +

demographic fluctuationsz }| {r
u

N
W (t, x) ,

N: local density of individuals

Xt : position of the front

Numerical observations:

h(Xt � ct)2i ⇡ �2(N)t

Allee e↵ect B 2 (0, 2) B 2 (2, 4) B > 4

in the PDE pulled waves pushed waves

variance �2 log(N)�3 N1�↵̃, ↵̃ 2 (1, 2) N�1

time scale log(N)3 N ↵̃�1 N

in the SPDE pulled semi pushed fully pushed

e↵ect fluctuations very sensitive CLT

B=0 : Brunet, Derrida, Mueller, Munier ’06
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Microscopic model for invasion fronts capturing

(?) the internal mechanisms leading to this second phase transition ?

(?) the genealogical structure at the tip ?

Bolthausen–Sznitman Beta(2� ↵,↵), Kingman

↵ = 1 ↵ 2 (1, 2) ↵ = 2

(?) pulled (?) semi pushed (?) fully pushed

B = 0, Brunet, Derrida,

Mueller, Munier ’06

Picture by F. Boenkost

Birzu et al. ’20 10



A toy model

11



A toy model

Dyadic branching Brownian motion with absorption at 0 with

• space-dependent branching rate r(x):

r(x) =
1

2
+

⇢� 1

2
1x2[0,1],

⇢ strength of the cooperation

• negative drift �µ(⇢) chosen such that the number of particles stays

roughly constant

µ speed of the wave 12



The case ⇢ = 1 (Berestycki, Berestycki, Schweinsberg ’13)

For ⇢ = 1, µ = 1 (speed of pulled waves)

Zt = number of particles in the moving frame at time t

At t = 0, the system starts with ⇡ N particles in a stable configuration

Let Z̄t = Zt/N.

Theorem (demographic fluctuations)

(Z̄log(N)3t)t>0 converges to Neveu’s Continuous-state branching pro-

cess (CSBP) as N ! 1.

(i) time scale of the fluctuations for B = 0 in the SPDE.

(ii) Genealogy associated to Neveu’s CSBP = Bolthausen–Sznitman coal.

(Bertoin, Le Gall ’00)

Theorem (genealogy)

The genealogy of the BBM is given by a Bolthausen–Sznitman coales-

cent on the time scale log(N)3
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⇤ Can we obtain a similar result on Z̄t for ⇢ > 1 ?

⇤ Genealogy of the BBM ?
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The pulled and pushed regimes in the particle system

Density of particles in the system:

t � 1, pt(x , y)dy ⇡ eµ(x�y)

mass lossz }| {

e

✓
�1+

1�µ2

2

◆
t
v1(x)v1(y)dy ,

where (�1, v1) are the principal e.v. of the Sturm–Liouville problem

1
2
u00 +

⇢� 1
2

1[0,1]u = �u, u(0) = u(L) = 0, L ! 1.

 �1 = �1(⇢) quantifies the growth of the system ) we set

µ =
p
1 + 2�1

Pulled/pushed regime.

1. if ⇢ < ⇢1, �1(⇢) = 0 (pulled)

2. if ⇢ > ⇢1, �1(⇢) > 0 and �1 %% w. r. t. ⇢ (pushed)

in this case, v1(x) / e�
p

µ2�1 x as x ! 1.

notation: � :=
p

µ2 � 1 (decay of the first e.v.)
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The semi pushed regime in the particle system

Assume that the system starts with N particles at 1.

Z̄t = Zt
N rescaled number of particles in the system

↵ = ↵(⇢) :=
µ+

p
µ2�1

µ�
p

µ2�1
= µ+�

µ��

The semi-pushed regime (T. ’22)

There exist ⇢1 < ⇢2 such that for all ⇢ 2 (⇢1, ⇢2),

1. the exponent ↵ is increasing and ↵(⇢i ) = i

2. (Z̄N↵�1t)t>0 converges (f.d.d.) to an ↵-stable CSBP.

Conjectures

if ⇢ < ⇢1 (µ = 1, ↵ = 1), (Z̄log(N)3t)t>0 ) Neveu’s CSBP

if ⇢ > ⇢2 (µ > 3
4

p
2, ↵ > 2), (Z̄Nt)t>0 ) Feller di↵usion

Remark ↵-stable CSBP , time changed Beta(2� ↵,↵)-coalescent

time change Tt :=
R t
0
(Xs)

1�↵, T�1(t) = inf{s > 0 : Ts > t} (Xs ↵-stab.)

(Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger’ 05 )
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Remarks pt(x , y) ⇡ eµxv1(x)| {z }
reproductive value h(x)

⇥ e�µyv1(y)| {z }
stable configuration h̃(y)

v1(y) ⇡ e��y , � =
p

µ2 � 1

in the BBM in the (S)PDE

stable configuration h̃(y) / e�(µ+�)y '(y) ⇠ e�(c+
p

c2�1)y

↵ semi pushed ↵ = µ+�
µ�� ↵ =

c+
p

c2�1

c�
p

c2�1
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Remarks
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Idea of the proof:

Berestycki, Berestycki, Schweinsberg (⇢ = 1) ’13: Set L(N) s.t. EL[Z̄t ] = 1

L(N)

x

t

log(N)3

N part.

1 + ⇡2

41

pulled

⇢⇢2

PL(Z̄t > x) ⇠ x�1

leading edge

bulk0
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Idea of the proof:

Berestycki, Berestycki, Schweinsberg (⇢ = 1) ’13: Set L(N) s.t. EL[Z̄t ] = 1

L(N)

x

t

N part.

1 + ⇡2

41 ⇢⇢2

semi-pushed

N↵�1
↵

1 2

PL(Z̄t > x) ⇠ x�↵

leading edge

bulk0
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Idea of the proof:

Berestycki, Berestycki, Schweinsberg (⇢ = 1) ’13: Set L(N) s.t. EL[Z̄t ] = 1

L(N)

x

t

N part.

1 + ⇡2

41 ⇢⇢2

fully pushed

leading edge

bulk0
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The fully pushed regime ↵ > 2

Method of moments (Foutel-Rodier, Schertzer ’22)

Kolmogorov estimate (Schertzer-T. ’23)

NPx(Z̄Nt > 0) ! 2h(x)

⌃2(⇢)t
, N ! 1. h(x) := eµxv1(x)

Remark ⇡ Kolmogorov estimate for multi-type GW processes

Ex [Z̄t ] ⇡ 1
N h(x) ) h(x) reproductive value of a part. located at x

⌃2(⇢)/2 “reproductive variance”

Yaglom law (Schertzer-T. ’23)

Starting from 1 part. at x , conditional on survival,

Z̄Nt ) ⌃2t
2 E (E standard exponential distribution)

Remark multi-type GW, Feller di↵usion 20



The fully pushed regime ↵ > 2

For 2 particles u, v alive at time t,

dt(u, v) := time to the MRCA |v ^ u|

At t = 0, the system starts with a single particle at x > 0.

Genealogy (Schertzer-T. ’23)

Conditional on {ZtN > 0}, sample k individuals in the BBM at time

tN denoted by (v1, ..., vk).

The distance matrix
✓

1

N
dtN(vi , vj)

◆

i,j

converges to that of a critical GW process with finite variance

conditioned on surviving up to a large time.

Remark: only binary mergers
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Moments of the BBM for ↵ > 2

spine = path of an immortal particle: stationary distribution hh̃ = (v1)2

(Doob h-transform)

moments:

Ex [Z̄
(K)
t ] ⇡ 1

N
h(x)K !tK�1

0

BBBBB@

=: ⌃2

2z }| {Z
r(z)h(z)2h̃(z)dz

1

CCCCCA

K�1

✓Z
h̃

◆K

| {z }
=1

‰ Reminder: v1(z) ⇡ e��z (z � 1), h(z) = eµzv1(z) and ↵ = µ+�
µ�� .

(...) integral on the branching point of the genealogical tree

⌃2 /
Z

e(µ�3�)zdz < 1 () µ < 3� () ↵ > 2.
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Moments of the BBM for ↵ > 2

Ex [Z̄
(K)
t ] ⇡ 1

N
h(x)K !tK�1

✓
⌃2

2

◆K�1

Kolmogorov estimate Px

�
Z̄t > 0

�
⇡ 2

⌃2
h(x)
tN

Ex [Z̄
(K)
t |Z̄t > 0] ⇡ K !

✓
⌃2t

2

◆K

) moments of an exponential rv with parameter ⌃2

2 t
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The semi pushed regime ↵ 2 (1, 2)

Ex [Z̄
(K)
t ] ⇡ 1

N
h(x)K !tK�1

0

BBBBB@

=: ⌃2

2z }| {Z
r(z)h(z)2h̃(z)dz

1

CCCCCA

K�1

✓Z
h̃

◆K

| {z }
=1

(...) integral on the branching point of the genealogical tree

⌃2 /
Z

e(µ�3�)zdz < 1 () µ < 3� () ↵ > 2.

* ↵ > 2: the branching points are concentrated around 0

* ↵ 2 [1, 2): the branching points are at +1

Cut-o↵ method Foutel-Rodier, Schertzer, T. 23+

The genealogy of the BBM coincides with that of an ↵-stable CSBP.
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Conclusion

Questions: Sample an individual at the tip of the invasion front at time

T . Where is its ancestor at time T � t ? Same question for two

individuals sampled at time t and their MRCA.

path of an immortal particle

* ↵ > 1 (µ > 1) pushed regime

stat. distribution qt(x , y) ⇡ v1(y)2 ⇡ e�2�y with � =
p
µ2 � 1

Â in the bulk

* ↵ = 1 (µ = 1) pulled regime

no stationary distribution Â at the leading edge

position of the branching points in the genealogical tree

* ↵ > 2 fully pushed regime

⌃2 < 1 Â in the bulk

* ↵ 2 [1, 2) pulled and semi pushed regimes

⌃2 = 1 Â at the leading edge
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Conclusion

pulled semi-pushed fully pushed

B 0 2 4

PDE pulled pushed

invasion speed c = 1 c = c(B) > 1

time scale log(N)3 N ↵̃�1 N

⇢ 1 ⇢1 ⇢2
time scale log(N)3 N↵�1 N

drift µ = 1 µ = µ(⇢) > 1

exponent ↵ = 1 ↵ 2 (1, 2) ↵ > 2

limiting CSBP Neveu (?) ↵-stable Feller

evolutionary dyn. at the leading edge in the bulk

driven by part.... ⌃2 = +1 ⌃2 < 1
path of an far to the right in the bulk

immortal part. no stat. distribution v2
1 (x) ⇠ e�2�x
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