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The genealogical approach

MOLECULAR CLOCK ASSUMPTION: Genealogical structure⇔ Genetic structure
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GOAL: Unravel the complex genetic patterns that surround us



POPULATION GENETICS
Genetics in exchangeable (or neutral, unstructured) populations
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(e.g. Steinruecken et al. ’13)
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Universality beyond exchangeable models ?

Effective population size
Kingman (WF)

Charlesworth ’09 expanding populations
Λ-coalescents

Schweinsberg ’17
natural selection

Etheridge Pennington ’22



F-KPP fronts with cooperation/Allee effects
Macroscopic dynamic

∂tu =
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local regulation

cooperation
B > 0 strength of cooperation

u(t, x)= density of individuals at x at time t > 0
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at constant speed v ≡ v(B)

u(t, x)= φ(x− vt)
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local regulation

cooperation
B > 0 strength of cooperation

u(t, x)= density of individuals at x at time t > 0

u(t, x)= φ(x− vt) B = 0
B = 2
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per capita growth rate
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Two types of waves Stokes ’76
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F-KPP fronts with cooperation/Allee effects
Macroscopic dynamic

∂tu =
1
2∂xxu+ 1

2 u(1−u)(1+Bu)

local regulation

cooperation
B > 0 strength of cooperation

The case B = 0 (pulled waves)
physical (1) and evolutionary properties (2) are prescribed by the dynamics at the very tip
of the front. They are ‘pulled by the individuals at the tip’.

Brunet et al. ’97, ’06, ’06, ’07, ’08
(1) Fluctuations of the invasion front
simulations, conjectures and heuristics

Maillard ’16

(2) Genealogy = Bolthausen-Sznitman

Bérard, Gouéré ’12
Mueller, Mytnik, Quastel ’10

proved for a linear toy model
(no interaction)Berestycki, Berestycki, Schweinsberg, ’13

u(t, x)= density of individuals at x at time t > 0

u(t, x)= φ(x− vt) B = 0

v− vN ∼
c

log(N)2

+
√

u(1−u)
N W



F-KPP fronts with cooperation/Allee effects
Macroscopic dynamic

∂tu =
1
2∂xxu+ 1

2 u(1−u)(1+Bu)

local regulation

cooperation
B > 0 strength of cooperation

Recent breakthrough: conjectures by Birzu, Hallatschek, Korolev ’18

simulations: Wright-Fisher model with 2 neutral types and vacancies
genetic drift ?N = local density of individuals

Heterozigocity
= proba. to sample 2 types at the tip
pH(t)= e−Λt, Λ=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ln−3 N B ∈ [0,2)
N1−α B ∈ (2,4]
N−1 B ≥ 4

B

α

v

1

2

pulled semipushed fully pushed

0

Stokes ’76 (pulled/pushed)u(t, x)= density of individuals at x at time t > 0

u(t, x)= φ(x− vt) B = 0
B = 2
B = 5

per capita growth rate

x
v

α=
v+

√
v2−1

v−
√

v2−1



A toy model to investigate the phase diagram

Extension of The genealogy of branching Brownian motion with absorption,
Berestycki, Berestycki, Schweinsberg 2013 (b = 1,µ= 1)

Dyadic branching Brownian motion
with branching rate

r(x)= 1
2 [(b−1)1x<1 +1]

killing at 0

“critical” drift −µ(b)

1 x

t

killing boundary

branching rate
b
2 >

1
2

branching rate 1
2

drift
−µ(b)

A model for travelling fronts ?



Branching Brownian motion FKPP Travelling front

v(B)

µ(b)

≈

linearisation + approximation
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2

1
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2

A toy model to investigate the phase diagram

Critical drift
Spectral decomposition of the critical operator Au =

1
2 u′′−µu′+ r(x)u (λ1, v1) principal eigenv.

Many-to-one lemma pt(x, y)≈ ceλ1te(
µ

2

2 − 1
2 )teµxv1(x)e−µyv1(y) ⇒ µ=

√
1+2λ1



Branching Brownian motion FKPP Travelling front
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A toy model to investigate the phase diagram

Critical drift
Spectral decomposition of the critical operator Au =

1
2 u′′−µu′+ r(x)u (λ1, v1) principal eigenv.

Many-to-one lemma pt(x, y)≈ ceλ1te(
µ

2

2 − 1
2 )teµxv1(x)e−µyv1(y) ⇒ µ=

√
1+2λ1

pulled/pushed regime: ∃b1 > 1 such that
• if b ∈ [1, b1], λ1 = 0 ⇒ µ= 1,
• if b > b1, λ1 > 0 and λ1 ↗ b ⇒ µ> 1, µ↗ b b

µ

1

e−µyv1(y)

pulled pushed

b1
↝ in this case v1(x)∝ e−

√
µ2−1x, x ≥ 1

e−(v+
√

v2−1)y



A toy model to investigate the phase diagram

reproductive value at x

stable configuration

stationary measure Π(x)= v1(x)2
= h(x)h̃(y)

pt(x, y)≈ ceλ1te(µ
2−1)teµ(x−y)v1(x)v1(y)=∶ h(x)h̃(y)

Spine = immortal particle ⇔ h-transform
Gu =

1
2∂xxu− v′1(x)

v1(x)∂xu

µ> 1 (pushed) ⇒Π(x)∝ e−2
√
µ2−1x, x ≥ 1

↝ the spine is in the bulk



A toy model to investigate the phase diagram

pulled/semipushed/fully pushed regime: ∃b2 > b1 such that

• for b ∈ [1, b1], µ= 1 → α= 1,
• for b > b1, α↗ b, α(b1)= 1 and α(b2)= 2.

Let α ∶=
µ+

√
µ2−1

µ−
√
µ2−1 b

α

µ

1

21

pulled semipushed fully pushed

reproductive value at x

stable configuration

stationary measure Π(x)= v1(x)2
= h(x)h̃(y)

b1 b2

pt(x, y)≈ ceλ1te(µ
2−1)teµ(x−y)v1(x)v1(y)=∶ h(x)h̃(y)

Spine = immortal particle ⇔ h-transform
Gu =

1
2∂xxu− v′1(x)

v1(x)∂xu

µ> 1 (pushed) ⇒Π(x)∝ e−2
√
µ2−1x, x ≥ 1

↝ the spine is in the bulk



The semipushed regime

0 1 x

t

Start with N particles distributed according to e−µyv1(y)d y
Zt = number of individuals
N →∞

SCALING LIMIT
( 1

N ZtNα−1)⇒ (Ξt) Ξ is an α-stable CSBP

≈ log(N)

N
α
−

1
lo

g(
N
)

≈ N descendants

GENEALOGY
The genealogy of the BBM converges toa Beta(2−α,α)-coalescent

b ∈ (b1, b2)

A branching particle system as a model of semi pushed fronts. T. 2024.
Convergence of spatial branching processes to alpha-stable CSBPs: Genealogy of semi-pushed fronts.
Foutel-Rodier, Schertzer and T. 2025+.

P(# > xN)∼ c
xα



δ log(N)

excursion exponential growth relaxation

The invasion is driven by excursions of particles
These excursions generate large subfamilies in the associated genealogy, diversity loss
Particles at the tip have a large reproductive value ⇒ large reproductive variance(in some sense)fast relaxation ⇒ collapse of structure

(Nα−1) (log(N))

The semipushed regime b ∈ (b1, b2)



SCALING LIMIT
( 1

N ZtN)⇒ (X t) X is a Feller diffusion
GENEALOGY
The genealogy of the BBM converges tothe Kingman coalescent
No excursion ! ↝ “CLT”/mean field

The fully pushed regime b > b2

Start with N particles distributed according to e−µyv1(y)d y
Zt = number of individuals
N →∞

Spectral analysis and k-spine decomposition of inhomogeneous branching Brownian motions. Ge-
nealogies in fully pushed fronts. Schertzer and T. 2024.

0 1 x

t



The invasion is pushed by the growth in the front
This generates only binary mergers in the associated genealogy, wide genetic diversity
The tip is not accessible ⇒ finite reproductive variance

N

The fully pushed regime b > b2

no excursion on



The method of moments
The case k = 1: many-to-one

Ex [∑v∈Nt
f (Xv)]= ∫∞

0 f (x, y)pt(x, y)
with pt(x, y)≈ eµxv1(x)e−µyv1(y)=∶ h(x)h̃(y)

≈ h(x)∫∞
0 f (x, y)h̃(y)d yreproductive value stable configuration

Xv = position of v
Nt = set of particles alive at t

Foutel-Rodier, Schertzer ’22



The method of moments

The case k = 2

The case k = 1: many-to-one

Ex [∑v∈Nt
f (Xv)]= ∫∞

0 f (x, y)pt(x, y)
with pt(x, y)≈ eµxv1(x)e−µyv1(y)=∶ h(x)h̃(y)

≈ h(x)∫∞
0 f (x, y)h̃(y)d yreproductive value stable configuration

Ex [∑v1≠v2∈Nt
f (Xv1)g(Xv2)]= ∫∞

0 ∫ t
0 2r(y)ps(x, y)(∫∞

0 f (z)pt−s(y, z)dz)(∫∞
0 g(z)pt−s(y, z)dz)dsd y

Xv = position of v
Nt = set of particles alive at t

(0, x)

v1 v2

(s, x)

≈ 2th(x)(∫∞
0 r(y)h̃(y) h(y)2d y)(∫∞

0 f (z)h̃(z)dz)(∫∞
0 g(z)h̃(z)dz)

=∶ Σ2

Foutel-Rodier, Schertzer ’22



The method of moments

The case k = 2

The case k = 1: many-to-one

Ex [∑v∈Nt
f (Xv)]= ∫∞

0 f (x, y)pt(x, y)
with pt(x, y)≈ eµxv1(x)e−µyv1(y)=∶ h(x)h̃(y)

≈ h(x)∫∞
0 f (x, y)h̃(y)d yreproductive value stable configuration

Ex [∑v1≠v2∈Nt
f (Xv1)g(Xv2)]= ∫∞

0 ∫ t
0 2r(y)ps(x, y)(∫∞

0 f (z)pt−s(y, z)dz)(∫∞
0 g(z)pt−s(y, z)dz)dsd y

Xv = position of v
Nt = set of particles alive at t

(0, x)

v1 v2

(s, x)

≈ 2th(x)(∫∞
0 r(y)h̃(y) h(y)2d y)(∫∞

0 f (z)h̃(z)dz)(∫∞
0 g(z)h̃(z)dz)

↝ position of the branching point
=∶ Σ2

h(y)2h̃(y)∝ e(µ−3
√
µ2−1)y and α≤ 2 ⟺ µ≥ 3

√
µ2 −1

α≤ 2 α> 2

Σ
2
=∞ Σ

2
<∞

tip bulk

Foutel-Rodier, Schertzer ’22



F-KPP fronts with cooperation/Allee effects

B

pulled
Bolthausen-Szitman

semipushed
Beta(2−α,α)

fully pushed
Kingman

(1) phase diagram
in accordance with Birzu et al. ’20

speed of invasion genetic composition↭

in the bulk in the bulk
at the tip in the bulk

at the tip
at the tip

lineages

Definition of a toy model for pushed
fronts falling in the universality class of
FKPP equation

(2) internal mechanisms
Berestycki, Berestycki, Schweinsberg ’13



F-KPP fronts with cooperation/Allee effects

(2) analytical criteria for the emergence of exchange-
able genealogies in structured models

(1) extension of the method of moments to
genealogies of branching diffusions

B

pulled
Bolthausen-Szitman

semipushed
Beta(2−α,α)

fully pushed
Kingman

spectral theory: fast mixing, reproductive variance

(1) phase diagram
in accordance with Birzu et al. ’20

speed of invasion genetic composition↭

spinal decomposition
↝ location of the ancestral lineages

in the bulk in the bulk
at the tip in the bulk

at the tip
at the tip

lineages

Definition of a toy model for pushed
fronts falling in the universality class of
FKPP equation

(2) internal mechanisms

Tools

Berestycki, Berestycki, Schweinsberg ’13


