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We consider a system of particles performing a one-dimensional dyadic
branching Brownian motion with space-dependent branching rate, negative
drift −μ and killed upon reaching 0. More precisely, the particles branch at
rate r(x) = (1 + W(x))/2, where W is a compactly supported and nonnega-
tive smooth function and the drift μ is chosen in such a way that the system
is critical in some sense.

This particle system can be seen as an analytically tractable model for
fluctuating fronts, describing the internal mechanisms driving the invasion
of a habitat by a cooperating population. Recent studies from Birzu, Hal-
latschek and Korolev suggest the existence of three classes of fluctuating
fronts: pulled, semipushed and fully pushed fronts. Here, we focus on the
fully pushed regime. We establish a Yaglom law for this branching process
and prove that the genealogy of the particles converges to a Brownian Coa-
lescent Point Process using a method of moments.

In practice, the genealogy of the BBM is seen as a random marked metric
measure space and we use spinal decomposition to prove its convergence in
the Gromov-weak topology. We also carry out the spectral decomposition of
a differential operator related to the BBM to determine the invariant measure
of the spine as well as its mixing time.
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1. Introduction.

1.1. The model and assumptions. We consider a dyadic branching Brownian motion
(Xt )t>0 (BBM) with killing at 0, negative drift −μ and position-dependent branching rate

(1) r(x) = 1

2
W(x)+ 1

2
,

for some function W : [0,+∞) → R. We assume that W satisfies the following assump-
tions:

(A1) the function W is nonnegative, continuously differentiable and compactly supported.
(A2) the support of W is included in [0,1].

We denote by Nt the set of particles in the system at time t and for all v ∈Nt , we denote by
xv = xv(t) the position of the particle v. Furthermore, we write Zt := |Nt | for the number of
particles in the system at time t . We write Px for the law of the process initiated from a single
particle at x ≥ 0 and Ex for the corresponding expectation.

Critical regime. We aim at choosing μ in such a way that the number of particles in the
system stays roughly constant.

Fix L > 1 and consider the BBM (XL
t )t>0 with branching rate r(x), drift −μ and killed at

0 and L. Denote by NL
t the set of particles in this system at time t and define ZL

t = |NL
t |.

By a slight abuse of notation, we will also denote by xv the positions of the particles in the
BBM XL. Let (t, x, y) �→ pt(x, y) be the fundamental solution of the linear equation

(A)

⎧⎨
⎩∂tu(t, y) = 1

2
∂yyu(t, y)+μ∂yu(t, y)+ r(y)u(t, y),

u(t,0) = u(t,L) = 0.

We say that pt ≡ pL
t is the density of particles in XL in the sense that for any measurable set

B ⊂ [0,L], the expected number of particles in B at time t starting from a single particle at
x is given by

∫
B pt(x, y) dy (see, e.g., [25], page 188). Let us now define

(2) gt (x, y) := eμ(y−x)e
μ2−1

2 tpt (x, y).

A direct computation shows that gt is the fundamental solution of the self-adjoint PDE

(B)

⎧⎨
⎩∂tu(t, y) = 1

2
∂yyu(t, y)+ 1

2
W(y)u(t, y),

u(t,0) = u(t,L) = 0.
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Let λ1 = λ1(L) be the maximal eigenvalue [36], Chapter 4, of the Sturm–Liouville problem

(SLP)
1

2
v′′(x)+ 1

2
W(x)v(x) = λv(x),

with boundary conditions

(BC) v(0) = v(L) = 0.

It is known that λ1 is an increasing function of L [28], Theorem 4.4.1, and that it converges to
a finite limit λ∞

1 ∈ (−∞,+∞) as L →∞ [28], Theorem 4.3.2. We now choose μ in such a
way that the expected number of particles is neither increasing nor decreasing exponentially.
According to (2), we expect that for large t

pt (x, y) ≈ eμ(x−y)e
1−μ2

2 t eλ∞
1 t v1(x)v1(y)

‖v1‖2 ,

where v1 denotes an eigenfunction associated to λ1 for the Sturm–Liouville problem (SLP)
and ‖ · ‖ refers to the L2-norm. This motivates the following definition.

DEFINITION 1 (Critical regime). The BBM is in the critical regime iff

(3) μ =
√

1 + 2λ∞
1 .

Pushed and pulled waves. The next definitions are motivated by recent numerical simula-
tions and heuristics [4, 5] for the noisy F-KPP equation with Allee effect

(4) ut = 1

2
uxx + u(1 − u)(1 +Bu)+

√
u

N
η.

From a biological standpoint, this equation describes the invasion of a one-dimensional habi-
tat by a cooperating population: u(t, x) stands for the population density, B > 0 measures the
strength of the cooperation between the individuals, N scales the local density of individu-
als and η is a space-time white noise. It is known that (4) exhibits two phase transitions as
the strength of the cooperation B increases. In the corresponding PDE (N = ∞), the fronts
are said to be pulled if the speed of the limiting travelling wave solutions is equal to 1 and
pushed if it is larger than 1. The transition between pulled and pushed waves occurs at B = 2
[16]. The numerical observations made in [5] indicate a second phase transition in (4) for
N < ∞. For pulled waves (B ∈ (0,2)), macroscopic fluctuations in the position of the front
are observed on a time scale of order log(N)3. In the pushed regime (B > 2), they emerge
on the time scale N for B > 4, and Nα̃−1, for some α̃ ∈ (1,2), for B ∈ (2,4). This leads to
the distinction of two classes of pushed waves: semipushed waves for B ∈ (2,4) and fully
pushed waves for B > 4. We refer to [35] for more details on the biological interpretation
of this model and to Section 1.3 for a brief overview on rigorous results in the pulled and
semipushed regimes.

DEFINITION 2 (Pulled, semipushed, fully pushed regimes). Consider the BBM (Xt ) in
the critical regime. Define

(5) β :=
√

2λ∞
1 and α := μ+ β

μ− β
.

1. If λ∞
1 = 0, or equivalently α = 1, the BBM is said to be pulled.
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2. If λ∞
1 ∈ (0,1/16) or equivalently

α ∈ (1,2) ⇐⇒ μ > 3β,

the BBM is said to be semipushed.
3. If λ∞

1 > 1/16 or equivalently

(Hfp) α > 2 ⇐⇒ μ < 3β,

the BBM is said to be fully pushed.

We say that the BBM is pushed if it is either semi or fully pushed, that is, when

(Hp) λ∞
1 > 0.

It is conjectured that, up to rescaling, the size and the genealogy at large times is indistin-
guishable from those of a continuous-state branching process (CSBP). More precisely:

1. In the pulled regime, the population size should converge to Neveu’s continuous-state
branching process and the genealogy of the BBM to the Bolthausen–Sznitman coalescent
(see [2] in the case W ≡ 0) on the time scale log(N)3.

2. In the semipushed regime, the population size should converge to an α-stable CSBP
on the time scale Nα−1, for α as in (5). In the previous example, this has been proved only
in the case where W = 1[0,1] [35]. Therein, it is also conjectured that the genealogy should
converge to a time-changed Beta(2 − α,α)-coalescent [3, 29, 34].

3. In the fully pushed regime, the rescaled population size should converge to a Feller dif-
fusion on the time scale N , and the genealogy should be indistinguishable from the genealogy
of a large critical Galton–Watson process with finite second moment. This is the content of
the present article.

Note that the time scales over which the demographic fluctuations emerge in the BBM are
similar to those observed in fluctuating fronts solution to (4). In addition, the transition be-
tween the pulled and the pushed regimes occurs precisely when the speed of the killing
boundary (0) becomes larger than 1 (see (3) and (Hp)).

EXAMPLE 1. Let ε > 0. Let W̃ be a function satisfying assumption (A1). Consider the
BBM with inhomogeneous branching rate rε(x) = 1

2 + εW̃ (x) in the critical regime (see
Definition 1). By [28], Theorem 4.6.4 and Theorem 4.4.3, there exists 0 < ε1 < ε2 such
that:

1. The BBM is pulled if ε ∈ (0, ε1).
2. The BBM is semipushed if ε ∈ (ε1, ε2).
3. The BBM is fully pushed if ε > ε2.

REMARK 1. We believe that our results could be extended to a certain class of perturba-
tions W decreasing exponentially fast to 0. However, this raises technical challenges that we
do not tackle in this work.

1.2. Main results. Throughout this paper, we assume that the BBM X is critical (see (3)).

PROPOSITION 1. Let v1 be the eigenfunction associated to the eigenvalue λ1 for the
Sturm–Liouville problem (SLP) with boundary conditions (BC), normalised in such a way
that v1(1) = 1. Under (Hp), v1 converges pointwise and in L2 to a positive limiting function
v∞

1 as L →∞. Furthermore, if in addition (Hfp) holds, then∫
R+

eμx(v∞
1
)3

(x) dx < ∞.
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To see why the latter proposition may hold true, recall that W ≡ 0 on [1,∞). Hence, on
this interval, the problem reduces to

1

2
v′′

1 (x) = λ1v1(x), x ∈ [1,L], v1(L) = 0.

If we impose the condition v1(1) = 1, a direct computation shows that v1(x) = sinh(
√

2λ1(L−x))

sinh(
√

2λ1(L−1))

on [1,L] so that, for all x ∈ [1,∞), v1(x) → v∞
1 (x) = e−β(x−1). The integrability condition

then holds under the extra assumption (Hfp).
In the following, we consider

(6) h̃∞(x) := c̃e−μxv∞
1 (x) and h∞(x) := 1

c̃‖v∞
1 ‖2 eμxv∞

1 (x),

where

c̃ :=
(∫ ∞

0
e−μxv∞

1 (x) dx

)−1
.

The constant c̃ is thought as a Perron–Frobenius renormalisation constant (see, e.g., [1],
page 185), in the sense that h∞ (resp. h̃∞) is a right (resp. left) eigenfunction associated
to the maximal eigenvalue of the differential operator

(7) Lu = 1

2
∂xxu−μ∂xu+ r(x)u,

normalised in such a way that∫ ∞
0

h̃∞(x) dx = 1 and
∫ ∞

0
h∞(x)h̃∞(x) dx = 1.

From this perspective, the function h̃∞ should correspond to the stable configuration of the
system and the function h∞ to the reproductive values of the individuals as a function of their
positions. We will write Π∞ for the probability distribution whose density is given by

(8) Π∞(x) := h∞(x)h̃∞(x) = (v∞
1 (x)/

∥∥v∞
1
∥∥)2, x ≥ 0.

THEOREM 1 (Kolmogorov estimate). Assume that (Hfp) holds. As N → ∞, for all
x, t > 0,

NPx(ZtN > 0) → 2

Σ2t
h∞(x) where

Σ2

2
:=
∫
R+

r(z)
(
h∞(z)

)2
h̃∞(z) dz.

This theorem is a continuous analogue of Kolmogorov estimate for multi-type Galton–
Watson processes [1], page 187.

We now turn to the description of the genealogy and the Yaglom law.
Intuitively, the next result states that the genealogy is asymptotically identical to the one of

a critical Galton–Watson [20, 23, 24] and that the marks are assigned independently according
to h̃∞. Let us now give a more precise description of our result.

From now on, we condition on the event {ZtN > 0}. Let (v1, . . . , vk) be k individuals
chosen uniformly at random from NtN . Denote by dtN(vi, vj ) the time to the most recent
common ancestor of vi and vj . We write xvi

for the position of the ith individual vi at time
tN . Let U be a uniform r.v. on [0, t] and θ > 0. Define Uθ such that

∀s ≤ t, P
(
Uθ ≤ s

) := (1 + θ)P(U ≤ s)

1 + θP(U ≤ s)
.(9)
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Let (Uθ
i ; i ∈ [k]) be k i.i.d. copies of Uθ and set

∀1 ≤ i < j ≤ k, Uθ
i,j = Uθ

j,i := max
{
Uθ

l : l ∈ {i, . . . , j − 1}}.
Define the random distance matrix (Hi,j ) := (Hi,j ; i �= j ∈ [k]) such that for every bounded

and continuous function ϕ :Rk2 →R,

E
[
ϕ
(
(Hi,j )

)]= k

∫ ∞
0

1

(1 + θ)2

(
θ

1 + θ

)k−1
E
[
ϕ
((

Uθ
i,j

))]
dθ.(10)

Finally, (Wi) := (Wi; i ∈ [k]) will denote a sequence of i.i.d. copies of a random variable
with law h̃∞.

THEOREM 2 (Yaglom law and limiting genealogies). Assume that (Hfp) holds. Let t > 0.
Suppose that the BBM starts with a single particle at x > 0. Conditional on {ZtN > 0}, as
N →∞:

(i) we have

ZtN

N
→ Σ2t

2
E, in distribution,

where E is a standard exponential distribution.
(ii)
((

dtN (vi ,vj )

N

)
, (xvi

)
)

converges to the distribution of ((Hσi,σj
), (Wσi

)) where σ is a
random uniform permutation of {1, . . . , k} and σ , (Hi,j ) and (Wi) are independent.

REMARK 2. The random distance matrix (Hi,j ) is the one obtained from a critical
Galton–Watson with finite second moment conditioned on surviving up to a large time. See
[20, 23, 24].

1.3. Comparison with previous work. Branching Brownian motions with inhomoge-
neous branching rates have received quite a lot of attention in the recent past [13, 14, 17, 19,
22, 26, 32, 35]. The general approach always relies on a spinal decomposition of the BBM.
Roughly speaking, the spine is constructed by conditioning a typical particle to survive. This
conditioning is achieved thanks to a Doob-h transform. In our setting, the harmonic function
is approximated by h(x) ∝ eμxv1(x) and the resulting h-transform is given by

(11) dxt = v′
1(xt )

v1(xt )
dt + dBt ,

where Bt is a standard Brownian motion (see Section 3).
A key assumption underlying [14, 17, 19, 22, 31] is that the harmonic function h is

bounded. From a technical stand point, we emphasise that this assumption is the one dis-
tinguishing our work from the previous ones. Indeed, in the pushed regime, we shall see
that v1 decreases exponentially at rate β so that the harmonic function h(x) blows up as x

tends to ∞. Due to the explosion of the harmonic function, many of the previously developed
techniques break down in our case.

At first sight, this assumption may only seem technical. However, it is the key assumption
which makes possible a transition from the semi to the fully pushed regime. In the pushed
regime, the invariant distribution for the spine dynamics (11) is given by

(12) Π(x) = v2
1(x)

‖v1‖2 .

Hence, for x large enough,

(13) h(x)Π(x) ≈ e(μ−3β)x.
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It then becomes clear from Definition 2 that, in the fully pushed regime (resp. semipushed),
the harmonic function is integrable (resp. nonintegrable) with respect to the invariant measure
of the spine. As a consequence, relaxing the assumption under which h is bounded is crucial
for understanding the transition between these two regimes.

This generalisation raises interesting technical challenges. A large fraction of the present
work (Section 4.1) is devoted to estimating the speed of convergence of the spine to its in-
variant measure Π in the pushed regime. More precisely, we use Sturm–Liouville theory in
order to derive the spectral decomposition of the differential operator (B) and show that the
relaxation time of the system is of order log(N). The difficulty arises from the fact that the
negative part of the spectrum of the Sturm–Liouville problem (SLP) becomes continuous as
L →∞ (see Figure 1). Not only is this contribution relevant to the fully pushed regime, but
also to the semipushed one. This will be the subject of future work.

One of the main contribution of the present work is the description of the genealogy
spanned by the population at a large time horizon. Beyond our Kolmogorov estimate and
the Yaglom law reminiscent of [14, 17, 19, 22, 31], we use k-spine decomposition [21] and
the method of moments developed in [13] to prove convergence of the genealogy to a con-
tinuum random metric space known as the Brownian coalescent point process [30] in the
Gromov weak topology. This approach will be further explained in the next section.

The demography and the genealogy of the critical BBM X have already been investi-
gated in the pulled and semipushed regimes [2, 27, 35]. For W ≡ 0, it was shown [2, 27]
that λ∞

1 = 0 (pulled regime) and that the rescaled population size ( 1
N

Zt log(N)3, t ≥ 0) con-
verges to Neveu’s CSBP. Using this scaling limit, Berestycki, Berestycki and Schweins-
berg [2] established the convergence of the genealogy to a Bolthausen–Sznitman coales-
cent on the time scale log(N)3. In [2, 27], the limiting spectrum is also continuous but
the spectral analysis of (SLP) is straightforward: the spectrum is explicit and given by
λi,L =− iπ2

2L2 and vi,L(x) = sin( iπx
L

). In [35], it was proved that, if W is a step function and

λ∞
1 ∈ (0, 1

16) (semipushed regime), the exponent α defined in (5) belongs to (1,2) and the
process ( 1

N
ZtNα−1, t ≥ 0) converges to an α-stable CSBP. This indicates that the genealogy

of the BBM in the semipushed regime is given by a time-changed Beta-coalescent [3]. Note
that, for α > 1, the time change depends on the size of the population and is thus random.
When W = 1[0,1], the spectrum of (SLP) is also explicit.

In the present work, we deal with the case λ∞
1 > 1

16 for continuous compactly supported
perturbations W . In particular, the spectral decomposition of (SLP) is not explicit and we
use the Prüfer transformation to derive the required estimates on the (vi,L) and the (λi,L).
Moreover, our strategy is conceptually different from that used in [2, 27, 35]. Extending the
method of moments from [13] to branching diffusions allows us to characterise the genealogy
of the system without describing its demographic fluctuations. In fact, the joint convergence
of the fluctuations, the genealogy and the configuration of the BBM is a consequence of the
convergence of the marked metric measure space associated to the BBM in the Gromov weak
topology. In addition, this method allows us to describe the limiting genealogy of the BBM
on a deterministic time scale that only depends on the parameters of the model.

EXAMPLE 2. Consider W = 10.1[0,1]. It was calculated in [35] that the negative part of
the spectrum of (SLP) with boundary conditions (BC) consists of the solutions to

(14)
tan(

√
9 − 2λ)√

9 − 2λ
=− tan(

√−2λ(L− 1))√−2λ
.

The solutions of this equation are plotted on Figure 1
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FIG. 1. Negative spectrum of the Sturm–Liouville problem (SLP) with boundary conditions (BC) for W defined
as in Example 2 and different values of L. The blue line corresponds to RHS of (14) and the red line to the LHS
of (14).

Various models have been suggested to explain the effect of cooperation (or Allee effect)
on the genetic diversity of expanding populations (see, e.g., [5, 11, 33]). In this work, we
consider a toy model for what happens at the tip of the invasion front. Our BBM can be
seen as a moving frame following the particles leading the invasion. At the leading edge,
the competition for resources is negligible and, as a first approximation, the particles evolve
independently. In this framework, the killing boundary at 0 models the beginning of the bulk
and the perturbation W encodes the Allee effect. Despite its simplicity (independence of the
particles, compactly supported perturbation), this system exhibits the same phase transitions
and the same macroscopic behaviour as the model with interaction (4) (see Section 1.1 and
[35], Section 1.4), which suggests that the two models belong to the same universality class.
In particular, this indicates that the phase diagram introduced in Definition 2 may not depend
on the precise form of the interactions between the individuals. In a nutshell, our model can
be seen as a linearisation of (4) that captures the nonlinear signature of Allee effects.

In the present work, we show that the genealogy of fully pushed waves is similar to that
of a neutral unstructured population with finite reproductive variance, as conjectured in [4]
for fluctuating fronts. We refer to [11] for a similar results on bistable waves in a model with
interactions.

We conclude this section by highlighting that our integrability condition already appeared
in different forms:

• In [5], the authors derive an explicite formula for the variance in the position of the front.
They show that this variance is given by 2σ 2t , for some constant σ 2 ≡ σ 2(N) such that
(see [5], equation [5])

σ 2 ∝ 1

N

∫
R

ρ′(x)2ρ(x)e4vx dx,

where v is the propagation speed of the determinist dynamic associated to (4) (N = ∞)
and ρ refers to the corresponding travelling front. The mass of the above integral is con-

centrated where ρ ≈ 0. The dispersion relation then shows that ρ(x) ∼ e−(v−√
v2−1)x in
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this region so that σ 2 is infinite and the fluctuations are much larger than the one pro-
vided by the central limit theorem when v > 3

√
v2 − 1. This is precisely our integrability

condition (Hfp).
• The harmonic function h(x) can be interpreted as the reproductive value of an individual at

x, that is, its relative contribution to the travelling wave. Interestingly enough, this quantity
also appears in the context of deterministic bistable fronts; see, for example, [33], equations
8. Recalling that pt(x, ·) refers to the density of particles in the BBM starting from a single
particle at x (see (A)), the quantity

(15)
∫ ∞

0
r(y)h(y)2pt(x, y) dy

can be interpreted as the reproductive variance in the BBM at time t . We will show that,
for sufficiently large time t , the density of particles in the process pt(x, y) is roughly
proportional to h̃(y) ≈ e−μyv1(y). Hence, (15) is finite precisely when (13) is integrable.
From this perspective, the Kolmogorov estimate and the Yaglom law established in this
article are very similar to those obtained for multi-type Galton–Watson processes with
finite variance [1], page 185 (see Section 1.2).

• In [5, 11], the integral
∫

hΠ is interpreted as the rate of coalescence of the lineages at
the tip of the front. As a first approximation, the lineages coalesce instantaneously at the
leading edge when they meet on the same site. Hence, the time to coalescence is roughly
given by an exponential random variable of parameter proportional to

(16)
∫ ∞

0

1

pt(x, y)
r(y)Π(y)2 dy.

When this parameter is finite, the genealogy of the sample should converge, after suitable
scaling, to Kingman’s coalescent. Recalling that pt(x, y) ∝ e−μyv1(y) for t � 1, we see
that the parameter (16) is finite precisely when (13) is integrable.

1.4. Notation. Given two sequences of positive real numbers (aN) and (bN), we write
aN � bn if aN/bN → 0 as N → ∞. We write aN ≲ bN if aN/bN is bounded in absolute
value by a positive constant and aN � bN if aN ≲ bN and bN ≲ aN . We write O(·) to refer to
a quantity bounded in absolute value by a constant times the quantity inside the parentheses.
Unless otherwise specified, these constants only depend on λ∞

1 . For k ∈ N, we write [k] for
the set of natural numbers {1, . . . , k}.

2. Outline of the proof. Our approach relies on the method of moments devised in [13].
To illustrate this approach, let us first think about the Yaglom law of Theorem 2. To prove
this result, one needs to show that the moments of ZtN/N converge to the moments of an
exponential random variable. It turns out that this approach can be extended to genealogies.

In Section 2.1, following [9], we encode the genealogy at time tN as a random marked
metric measure space. The moments of this random marked metric measure space are ob-
tained by biasing the population by its kth moment and then picking k individuals uniformly
at random (see Remark 3 below). In Section 2.2, we introduce a limiting random marked
metric measure space called the marked coalescent point process (CPP) which corresponds
to the limiting genealogy of a critical Galton–Watson process [30]. The remainder of the sec-
tion is dedicated to the sketch of the proof for the convergence of the moments of our BBM
to the moments of the marked CPP using the spinal decomposition introduced in [13].
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2.1. Marked metric measure spaces. Let (E,dE) be a fixed complete separable metric
space, referred to as the mark space. In our application, E = (0,∞) is endowed with the usual
distance on the real line. A marked metric measure space (mmm-space for short) is a triplet
[X,d, ν], where (X,d) is a complete separable metric space, and ν is a finite measure on
X×E. We define |X| := ν(X×E). (Note that ν is not necessarily a probability distribution.)
To define a topology on the set of mmm-spaces, for each k ≥ 1, we consider the map

Rk :
{
(X ×E)k →R

k2

+ ×Ek,(
(vi, xi); i ≤ k

) �→ (
d(vi, vj ), xi; i, j ≤ k

)
,

that maps k points in X × E to the matrix of pairwise distances and marks. We denote by
νk,X = ν⊗k ◦ R−1

k , the marked distance matrix distribution of [X,d, ν], which is the push-
forward of ν⊗k by the map Rk . Let k ≥ 1 and consider a continuous bounded test function
ϕ : Rk2

+ ×Ek →R. One can define a functional

(17) Φ(X,d, ν) = 〈νk,X,ϕ〉 =
∫
(X×E)k

ϕ
(
d(vi, vj ), xi; i �= j ∈ [k]) k∏

i=1

ν(dvi ⊗ dxi).

Functionals of the previous form are called polynomials, and the set of all polynomials, ob-
tained by varying k and ϕ, is denoted by 𝚷. Let ϕ be of the form

ϕ
(
d(vi, vj ), xi; i �= j ∈ [k])=∏

i,j

ψi,j

(
d(vi, vj )

)∏
i

ϕi(xi),

where ψi,j , ϕi are bounded continuous functions. In this case, we say that Φ(X,d, ν) is a
product polynomial. We denote by 𝚷̃ the set of product polynomials.

DEFINITION 3. The marked Gromov-weak (MGW) topology is the topology on mmm-
spaces induced by 𝚷. A random mmm-space is a r.v. with values in M—the set of (equiva-
lence classes of) mmm-spaces—endowed with the marked Gromov-weak topology and the
associated Borel σ -field. The marked Gromov-weak (MGW) topology is identical to the
topology induced by the product polynomials 𝚷̃.

For a random mmm-space [X,d, ν], the moment of [X,d,μ] associated to Φ is defined as
E[Φ(X,d, ν)].

REMARK 3. Consider a random mmm-space [X,d, ν]. Assume that E[|X|k] < ∞. The
moments of [X,d, ν] can be rewritten as

E
[
Φ(X,d, ν)

]= E
[|X|k]× 1

E[|X|k]E
[|X|kϕ(d(vi, vj ), xvi

, i �= j ∈ [k])],
where (vi, xvi

) are k points sampled uniformly at random with their marks and |X| := ν(X×
E) is thought as the total size of the population. As a consequence, the moments of a random
mmm-space are obtained by biasing the population size by its kth moment and then picking
k individuals uniformly at random.

Many properties of the marked Gromov-weak topology are derived in [9] under the further
assumption that ν is a probability measure. In particular, the following result shows that 𝚷
forms a convergence determining class only when the limit satisfies a moment condition,
which is a well-known criterion for a real variable to be identified by its moments; see, for
instance, [10], Theorem 3.3.25. This result was already stated for metric measure spaces
without marks in [8], Lemma 2.7, and was proved in [13].
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FIG. 2. Simulation of the unmarked Brownian CPP. On the RHS, a vertical line of height t at location y rep-
resents an atom (t, y) of P . On the LHS, the tree corresponding to the right CPP; the distance dT is the tree
distance of the leaves.

PROPOSITION 2. Suppose that [X,d, ν] is a random mmm-space verifying

(18) lim sup
p→∞

E[|X|p]1/p

p
< ∞.

Then, for a sequence [Xn,dn, νn] of random mmm-spaces to converge in distribution for the
marked Gromov-weak topology to [X,d, ν] it is sufficient that

lim
n→∞E

[
Φ(Xn,dn, νn)

]= E
[
Φ(X,d, ν)

]
for all Φ ∈ 𝚷.

2.2. Marked Brownian coalescent point process (CPP). Let T > 0 and m be a measure
on R+. Assume that |m| := m(R+) > 0. Consider P a PPP(dt

t2 ⊗ d�). Define

YT = inf
{
y : (t, y) ∈ P, t ≥ T

}
,

and

dT (x, y) = sup
{
t : (t, z) ∈ P and x ≤ z ≤ y

}
, 0 < x < y < YT .

The marked Brownian coalescent point process (CPP) is defined as

MCPPT
:= ([0, YT ], dT ,Leb ⊗m(dx)

)
,

where Leb refers to the Lebesgue measure on [0, YT ]. This definition is illustrated in Figure 2.
This object is a natural extension of the standard Brownian CPP [30].

REMARK 4. A direct computation shows that YT m(R+) (which can be thought of as
the population size at time T ) is distributed as an exponential random variable with mean
T |m|. If the CPP encodes the size and the genealogy of critical branching processes, this is
consistent with Yaglom’s law for such processes.

PROPOSITION 3. Let k ∈N. Let (ϕi; i ∈ [k]) and (ψi,j ; i, j ∈ [k]) be continuous bounded
functions. Consider a product polynomial of the form

∀M = [X,d, ν],Ψ(M) :=
∫ k∏

i,j=1

ψi,j

(
d(vi, vj )

) k∏
i=1

ϕi(xi)ν(dvi ⊗ dxi).
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Then

E
[
Ψ(MCPPT

)
]= k!T k

E

[
k∏

i,j=1

ψi,j (Uσi,σj
)

][
k∏

i=1

∫
m(dx)ϕi(x)

]
,

where (Ui; i ∈ [k − 1]) is a vector of uniform i.i.d. random variables on [0, T ],
Ui,j = Uj,i = max{Ul : l = i, . . . , j − 1},

σ is a random uniform permutation of {1, . . . , k}, and σ and (Ui) are independent.

PROOF. The proof is identical to Proposition 4 in [13]. □

PROPOSITION 4 (Sampling from the CPP). Let k ∈ N and sample k points, denoted by
(v1, x1), . . . , (vk, xk), uniformly at random from the CPP. Then ((dT (vi, vj ))i,j , (xi)i) is iden-
tical in law to ((Hσi,σj

), (wσi
)) where (Hi,j ) is defined as in Theorem 2 (ii), the (wi) are inde-

pendent random variables with law m
|m| and σ is a random uniform permutation of {1, . . . , k},

independent of (Hi,j )i,j and (wi)i .

PROOF. The proof is identical to the one in the case of the unmarked CPP. See [6], Propo-
sition 4.3. □

2.3. Convergence of mmm. Fix t > 0. Recall that Nt refers the set of particles alive at
time t in the BBM X. Set

νt :=
∑
v∈Nt

δv,xv and ∀v, v′ ∈Nt , dt

(
v, v′)= t − ∣∣v ∧ v′∣∣,

where |v ∧ v′| denotes the most recent time at which v and v′ had a common ancestor. Let
Mt := [Nt , dt , νt ] be the resulting random mmm-space. Finally, set

ν̄t := 1

N

∑
v∈NtN

δv,xv and ∀v, v′ ∈NtN , d̄t

(
v, v′)= (t − 1

N

∣∣v ∧ v′∣∣),
and define the rescaled metric space M̄t := [NtN , d̄t , ν̄t ]. The main idea underlying Theo-
rem 2 is to prove the convergence of M̄t to a limiting CPP.

THEOREM 3. Conditional on the event {ZtN > 0}, (M̄t ;N ∈N) converges in distribution

to a marked Brownian CPP with parameters (t, Σ2

2 h̃∞).

The proof of the theorem relies on a cut-off procedure. Let

(19) L := 1

μ− β
log(N).

Recall that XL refers to the BMM killed at 0 and L. Let νL
t (resp. ν̄L

t ) be the empirical
measure obtained by replacing Nt by NL

t in the definition of νt (resp. ν̄t ). Let ML
t be the

mmm-space obtained from XL, that is, ML
t = [NL

t , dt , ν
L
t ]. M̄L

t is defined analogously to
M̄t (i.e., accelerating time by N and rescaling the empirical measure by 1/N). Finally, define
for all (t, x) ∈ [0,∞)× [0,L],
(20) h(t, x) := 1

c̃‖v1‖2 e(λ∞
1 −λ1)t eμxv1(x) and h̃(t, x) := c̃e(λ1−λ∞

1 )t e−μxv1(x),

where c̃ is as in (6).
We will proceed in two steps. For our choice of L, we will show that:
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1. M̄L
t converges to the limit described in Theorem 3.

2. M̄L
t and M̄t converge to the same limit.

The choice for L will be motivated in Section 2.6. We start by motivating the fact that M̄L
t

converges to the desired limit using a spinal decomposition introduced in [13] in a discrete
time setting.

2.4. The k-spine.

DEFINITION 4. The 1-spine process is the stochastic process on [0,L] with generator

1

2
∂xxu+ v′

1(x)

v1(x)
∂xu, u(0) = u(L) = 0.

In the following, qt (x, y) ≡ qL
t (x, y) will denote the probability kernel of the 1-spine.

LEMMA 1 (Many-to-one). For every bounded measurable function f :R+ →R

Ex

[ ∑
v∈NL

t

f (xv)

]
=
∫ L

0
f (y)qt (x, y)

h(0, x)

h(t, y)
dy.

PROOF. It is known (see, e.g., [25], page 188) that for every bounded measurable function
f :R+ →R

Ex

[ ∑
v∈NL

t

f (xv)

]
=
∫ L

0
f (y)pt (x, y) dy,

where pt is the fundamental solution of (A). A direct calculation shows that h(0,x)
h(t,y)

qt (x, y)

is also a fundamental solution of (A). The result follows by recalling that the fundamental
solution of (A) is unique. □

The next result is standard.

PROPOSITION 5. The 1-spine has a unique invariant probability measure given by

Π(dx) = h(t, x)h̃(t, x) dx =
(

v1(x)

‖v1‖
)2

dx.

We now define the k-spine tree. Let (U1, . . . ,Uk−1) be i.i.d. random variables uniformly
distributed on [0, t]. Define

(21) ∀1 ≤ i < j ≤ k − 1, Ui,j = Uj,i = max{Ui, . . . ,Uj−1}.
Let T be the tree of depth t with k leaves such that the tree distance between the ith and j th
leaves is given by Ui,j . This tree is ultrametric and planar in the sense that

∀i, j, � ∈ [k], Ui,j ≤ Ui,� ∨U�,j

(ultrametric) and the inequality becomes an equality if i < � < j (planar). The depth τ of the
first branching point is thus given by

τ = max
i∈[k−1]Ui.

Marks are then assigned as follows. On each branch of the tree, the marks evolve according to
the 1-spine process (on [0,L]) and branch into independent particles at the branching points
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FIG. 3. The k-spine tree (k = 3). Left panel: planar tree T generated from 2 i.i.d. uniform random variables
(U1,U2). In this tree, we have τ = U1. The corresponding node in B is denoted by v1. The left and right subtrees
T0 and T1 rooted at ζv1 both have depth τ , T0 has a single leaf, V1, and T1 has two leaves, V2 and V3. Right
panel: branching 1-spines running along the branches of the tree T.

of T. The resulting planar marked ultrametric tree will be referred to as the k-spine tree
and denoted by T . We write T0 (resp. T1) for the left (resp. right) marked subtree attached
to the first branching point of the tree. Note that these two subtrees are also planar marked
ultrametric trees and that they are both rooted at xMRCA(T ), the mark of the first branching
point.

In the following, B will denote the set of k − 1 branching points of the k-spine tree T and
L will denote the set of k leaves. We will write ζv for the mark (or the position) of the spine
at a node v ∈ B ∪ L. For v ∈ B, |v| will denote the time component of the branching point.
Finally, (Vi; i ∈ [k]) is the enumeration of the leaves from left to right in the k-spine tree (i.e.,
Vi is the leaf with label i). See Figure 3 for an illustration of these definitions. We refer to
[13], Section 3.1.3, for a more formal construction of the k-spine tree.

We will denote by Qk,t
x the distribution of the k-spine rooted at x. The t superscript refers

to the depth of the underlying genealogy. Note that Qk,t
x has an implicit dependence on N

by our choice of L – see (19). To ease the notation, this dependence will be dropped in the
notation. We will also need to define the accelerated version of the k-spine.

DEFINITION 5 (Accelerated k-spine). Consider the 1-spine accelerated by N , that is,
the transition kernel of the 1-spine is now given by qtN(x, y) ≡ qL

tN(x, y). We denote this
kernel by q̄t (x, y). Consider the same planar structure as before: the depth of the tree is t and
the distance between the leaves is given by (21). We denote by Q̄k,t

x the distribution of the
k-spine obtained by running accelerated spines along the branches. For any vertex v in the
accelerated k-spine, ζ̄v will denote the mark of the vertex v.

PROPOSITION 6 (Rescaled many-to-few). Let t > 0. Let (ϕi; i ∈ [k]) and (ψi,j ; i, j ∈
[k]) be measurable bounded functions and define

∀M = [X,d, ν], Ψ(M) =
∫ ∏

i,j

1{vi �=vj }ψi,j

(
d(vi, vj )

)∏
i

ϕ(xi)ν(dvi ⊗ dxi).

Let h be defined as in (20). Then

Ex

[
Ψ
(
M̄L

t

)]= 1

N
k!h(0, x)tk−1Q̄k,t

x

(
Δ̄
∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕi(ζ̄Vσi
)

)
,
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where (Ui,j ) is as in (21), σ is an independent uniform permutation of {1, . . . , k}, and

Δ̄ :=∏
v∈B

r(ζ̄v)h
(|v|N, ζ̄v

) ∏
v∈L

1

h(tN, ζ̄v)
.

The proof of Proposition 6 will be the object of Section 3. Our second crucial result is the
following convergence theorem.

THEOREM 4. Let (ϕ̃i; i ∈ [k]) and (ψi,j ; i, j ∈ [k]) be continuous bounded functions.
Assume further that the ϕ̃i ’s are compactly supported in (0,∞). As N →∞,

Q̄k,t
x

(
Δ̄
∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕ̃i(ζ̄Vσi
)h∞(ζ̄Vσi

)

)

−→
(

Σ2

2

)k−1
E

[∏
i,j

ψi,j (Uσi,σj
)

]∏
i

∫
R+

ϕ̃i(x)Π∞(dx),

where Π∞ is as in (8).

Let us now give brief heuristics for the previous result. By definition

Q̄k,t
x

(
Δ̄
∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕ̃i(ζ̄Vσi
)h∞(ζ̄Vσi

)

)

= Q̄k,t
x

(∏
v∈B

r(ζ̄v)h
(|v|N, ζ̄v

)∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕ̃i(ζ̄Vσi
)

h∞(ζ̄Vσi
)

h(tN, ζ̄Vσi
)

)
.

The branching structure for the k-spine is binary a.s. and the spines running along the
branches are accelerated by N . We will show later on that under (Hfp), h(tN,x) ≈ h∞(x)

and h̃(tN, x) ≈ h̃∞(x) for N large. In addition, we see fom Proposition 5, as N →∞,

Π(dx) ≈ Π∞(dx) = h∞(x)h̃∞(x) dx = v∞
1 (x)2

‖v∞
1 ‖2 dx.

It is now reasonable to believe that, provided enough mixing, the RHS can be approximated
by (∫ ∞

0
h∞(x)r(x)Π∞(dx)

)k−1
E

[∏
i,j

ψi,j (Uσi,σj
)

]∏
i

∫
ϕ̃i(x)Π∞(dx),

assuming the values of the spine at the branching points and the leaves converge to a sequence
of i.i.d. random variables with law Π∞. This yields the content of Theorem 4.

CHALLENGE 1. The previous argument relies on a k-mixing property of the 1-spine. This
analysis will be carried out in Section 4 using Sturm–Liouville theory.

2.5. Limiting moments. Let us now demonstrate the importance of Theorem 4. Let

∀M = [X,d, ν], Ψ̃(M) :=
∫
(X×E)k

∏
i,j

ψi,j

(
d(vi, vj )

)∏
i

ϕ̃i(xi)h
∞(xi)ν(dvi ⊗ dxi),
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where ϕ̃i ,ψi,j are bounded continuous functions such that the ϕ̃i are also compactly sup-
ported. From the many-to-few formula, Theorem 4 entails

Ex

[
Ψ̃
(
M̄L

t

)]= Ex

[∫ ∏
i,j

ψi,j

(
d̄t (vi, vj )

)∏
i

ϕ̃i(xi)h
∞(xi)ν̄

L
t (dvi ⊗ dxi)

]

≈ Ex

[∫ ∏
i,j

1{vi �=vj }ψi,j

(
d̄t (vi, vj )

)∏
i

ϕ̃i(xi)h
∞(xi)ν̄

L
t (dvi ⊗ dxi)

]

≈ 2h∞(x)

NΣ2t
× k!
(
t
Σ2

2

)k

E

[∏
i,j

ψi,j (Uσi,σj
)

]∏
i

∫
R+

ϕ̃i(x)Π∞(dx).

Let us formally take ψi,j ≡ 1 and ϕ̃i ≡ 1/h∞ in the previous expression (note that this is
problematic since ϕ̃i is neither bounded nor compactly supported; see Challenge 4 below).
Then, for large N ,

Ex

[(
1

N
ZL

tN

)k]
≈ 2h∞(x)

NΣ2t
× k!

(
t
Σ2

2

)k

︸ ︷︷ ︸
exponential moments

×
(∫ ∞

0
h̃∞(x) dx

)k

︸ ︷︷ ︸
=1

,

where we used the fact that h̃∞ = Π∞/h∞. Now, the RHS coincides with the moments of a
r.v. with law (

1 − 2h∞(x)

NΣ2t

)
δ0(dx)+ 2h∞(x)

NΣ2t
exp
(
− 2x

Σ2t

)
2dx

Σ2t
.

If we identify the Dirac measure at 0 with the extinction probability, this suggests the Kol-
mogorov estimate and the Yaglom law exposed in Theorem 1 and Theorem 2. Furthermore,
if we replace ϕ̃i by ϕi/h∞ in Theorem 4 (again a problematic step), the previous estimates
entail

Ex

[
Ψ
(
M̄L

t

)|ZL
tN > 0

]≈ k!E
[∏

i,j

ψi,j (Uσi,σj
)

]∏
i

∫
R+

ϕi(x)

(
t
Σ2

2

)
h̃∞(x) dx,

where Ψ(M) is now an arbitrary product polynomial of the form

Ψ(M) :=
∫ ∏

i,j

ψi,j

(
d(vi, vj )

)∏
i

ϕi(xi)ν(dvi ⊗ dxi).

According to Proposition 3, this coincides with the moments of the Brownian CPP described
in Theorem 3.

CHALLENGE 2. The previous computation only suggests that the probability for the pop-
ulation size to be o( 1

N
) is given by the Kolmogorov estimate. Intuitively, the Dirac mass above

corresponds to a population whose size becomes invisible at the limit after rescaling the pop-
ulation by N . It thus remains to show that if the population is small compared to N then it
must be extinct. This will be carried out in Section 6.

CHALLENGE 3. Going from Theorem 4 to the convergence of the M̄L
t requires to use test

functions exploding at the boundary. To overcome this technical difficultly, we will impose an
extra thinning of the population by killing all the particles close to the boundaries at time
tN . This final technical step will be carried out in Section 7 using some general properties of
the Gromov-weak topology.
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2.6. Choosing the cutoff L. We now motivate our choice for L. According to the previous
arguments, we want to choose L large enough such that, on a time scale O(N):

(i) The particles do not reach L with high probability. This will imply that M̄L
t and M̄t

coincide with high probability.
(ii) The 1-spine reaches equilibrium in a time o(N) regardless of its initial position in

[0,L]. This is needed to justify the calculations of Section 2.4.

(i) Hitting the right boundary. Let E be a compact set in the vicinity of the boundary L

(say [L− 2,L− 1]). Recall from the discussion after Proposition 1 that for y ≥ 1,

h∞(y)= 1

c̃‖v∞
1 ‖2 eβe(μ−β)y and h̃∞(y)=c̃eβe−(μ+β)y.

A direct application of Lemma 2 to f (y) = 1y∈E implies that

Ex

[ ∑
v∈NL

tN

1xv∈E

]
=
∫
E

h(0, x)

h(tN,y)
qtN(x, y) dy ≈

∫
E

h∞(x)

h∞(y)
Π∞(dy)

≈ h∞(x)

∫
E

h̃∞(y) dy ≈ h∞(x)O
( =N−α︷ ︸︸ ︷
e
−μ+β

μ−β
log(N))

,

where we used that h̃(tN, y) ≈ h̃∞(y) for N large. The last approximation holds under the
assumption that E is a compact set close to L and follows from (19). Integrating this on
[0, tN] shows that the occupation time of the set E on the time interval [0, tN] is O(N1−α).
We then recall that the probability of survival is of order 1/N so that the occupation time of
the conditioned process is O(N2−α). Using that α > 2 under (Hfp), this yields the desired
estimate.

(ii) Mixing time. Recall from the discussion after Proposition 1 that v1(x) ≈ e−β(x−1) for
x ≥ 1 and L large enough. As a consequence, the 1-spine (see Definition 4) is well approxi-
mated on [1,∞) by the diffusion

dzt =−β dt + dBt .

A good proxy for the mixing time is the first returning time at 1 which is of the order log(N) =
o(N) for every x ∈ [1,L], as desired. A more refined analysis will be carried out in Section 4.

3. The many-to-few theorem.

3.1. The general case. In this section, we consider a general branching diffusion killed
at the boundary of a regular domain Ω ⊂ R

d . Unless otherwise specified, we use the same
notation as in the previous sections. We will assume that:

1. The generator of a single particle is given by a differential operator (in the divergence
form)

Gf (x) = 1

2

∑
i,j

∂xi

(
aij (x)∂xj

f (x)
)+∑

i

bi(x)∂xi
f (x), x ∈ Ω,(22)

f (x) = 0, x ∈ ∂Ω.

We assume that (aij ) is uniformly elliptic, which means that there exists a constant θ > 0
such that for all ξ ∈ R

d and a.e. x ∈ Ω,
∑d

i,j=1 aij (x)ξi, ξj ≥ θ‖ξ‖2 (see [12], Section 6.1).

In addition, we assume that ai,j ∈ C1(Ω) and supx∈Ω |bi(x)| < ∞ for all 1 ≤ i, j ≤ d .
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2. A particle at location x branches into two particles at rate r(x) (we only consider binary
branching).

We denote by Nt the set of particles alive at time t . For any pair of particles v,w ∈Nt , we
write |u ∧ v| for the most recent time at which v and u had a common ancestor and their
genealogical distance is defined as

dt (u, v) = t − |u∧ v|.
Finally, we define the random mmm space

(23) Mt = [Nt , dt , νt ] where νt =
∑
v∈Nt

δv,xv .

We say that a function h(x) is harmonic if and only if h is positive on Ω and satisfies the
Dirichlet problem

Ah(x) := Gh(x)+ r(x)h(x) = 0 for x ∈ Ω,

h(x) = 0 for x ∈ ∂Ω.
(24)

In our application, we will consider the domain Ω = (0,∞) × (0,L) where the first coordi-
nate will correspond to the time variable seen as a mark (see Section 3.3). In this case, there
exists a unique harmonic function (up to constant multiplies) given by (20). In the general
case, if A has multiple harmonic function, we choose one and define a 1-spine process as
follows.

DEFINITION 6. Let h be a harmonic function. The 1-spine process (associated to h) is
the process whose generator is given by the Doob h-transform of the differential operator A

A(hf )

h
(x) = Gf (x)+∑

i,j

ai,j (x)
∂xj

h(x)

h(x)
∂xi

f (x),

f (x) = 0, x ∈ ∂Ω,

where the first equality is a direct consequence of the fact that h is harmonic. We will denote
by qt (x, y) the transition probability of the 1-spine process. The k-spine distribution Qk,t

x is
defined as in Section 2.4. In particular, we recall that we write B for the set of branching
points of the k-spine, L for the set of leaves, Vi, . . . , VK for an enumeration of the leaves
from left to right, and ζv for the mark of v ∈ B ∪L. We further define

(25) Δ :=∏
v∈B

r(ζv)h(ζv)

k∏
i=1

1

h(ζVi
)
.

This section is devoted to the proof of the following result.

THEOREM 5 (Many-to-few). Let t > 0 and x ∈ Ω. Let (ϕi; i ∈ [k]) and (ψi,j ; i, j ∈ [k])
be continuous bounded functions. Consider the product polynomial defined by

∀M = [X,d, ν], Ψ(M) :=
∫ ∏

i,j

1{vi �=vj }ψi,j

(
d(vi, vj )

)∏
i

ϕi(xi)ν(dvi ⊗ dxi).

Then

Ex

[
Ψ(Mt)

]= k!h(x)tk−1Qk,t
x

(
Δ
∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕi(ζVσi
)

)
,

where (Ui,j ) is as in (21) and σ is an independent random permutation of [k].
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The main idea for the proof of Theorem 5 consists in using the branching property to derive
a recursion formula satisfied both by the planar moments of the branching diffusion and by
the law of the k-spine. First, this formula will be derived for the biased spine measure Lk,t

x

given by

(26)
dLk,t

x

dQ
k,t
x

= tk−1Δ,

where Δ is defined in (25). Second, we will show that the same relation holds for the moments
of Mt . This step will rely on a uniform planarisation of the branching diffusion that we now
describe.

At every time t > 0, every particle is endowed with a mark xv (the position of the particle)
and a Ulam–Harris label pv , where pv ∈⋃n∈N{0,1}n. As before, xv denotes the position of
the particle. The planarisation labels pv are assigned recursively as follows. We label the root
with ∅ and:

1. At every branching point v, we distribute the labels (pv,0) and (pv,1) uniformly
among the two children: (pv,0) (resp. (pv,1)) is said to the left (resp. right) child of v.

2. The label pv does not vary between two branching points, that is, pv1 = pv2 if the
trajectory connecting v1 and v2 does not encounter any branching points.

Let N pl
t be the set of particles at time t in the planar branching diffusion. The genealogical

distances and the marks of the planar branching diffusion will be encoded by marked binary
planar ultrametric matrices that we now define.

We say that a matrix (Ui,j )1≤i,j≤k is planar ultrametric if

∀i < j < l, Ui,l = Ui,j ∨Uj,l.

Moreover, the matrix (Ui,j )1≤i,j≤k is said to be binary if

∀i < j < l,
∣∣{Ui,j ,Ul,j ,Ui,l}

∣∣≥ 2.

We denote by Uk the set of binary planar ultrametric matrices of size k. Let U∗
k = Uk × Ek

be the set of marked binary planar distance matrices.
Note that the Ulam–Harris (pv) labelling induces an order on N pl

t . In particular, for every
k-uplet v1 < v2 · · · < vk in N pl

t and  v = (v1, . . . , vk), the marked distance matrix of the
sample  v,

U( v) := ((dt (vi, vj ), (xvi
)
))

,

is an element of U∗
k .

Our recursion formula on the moments of Mt will be obtained by dividing every ordered
k-uplet in N pl

t into two subfamilies, the descendants of the left (resp. right) child of the most
recent common ancestor (MRCA) of the sample. This will by achieved by partioning [k] as
follows. For U = ((Ui,j ), (wi)) ∈ U

∗
k , define τ(U) = maxi �=j Ui,j . In words, τ is the time to

the MRCA of the sample. We say the integers i and j are in the same block iff Ui,j < τ . Since
U is a binary planar ultrametric matrix, there exists n ≤ k − 1 such that this partition can be
written as {{1, . . . , n}, {n + 1, . . . , k}}. We denote by T0(U) and T1(U) the corresponding
sub-matrices obtained from this partition and write |T0(U)| and |T1(U)| for the sizes of the
two blocks. Note that Ui,j is equal to τ(U) if i and j do not belong to the same block, and to
(T0)i,j (resp. (T1)i−|T0|,j−|T0|) if they both belong to the first (resp. second) block.
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PROPOSITION 7. Let k ∈N, t > 0 and x > 0. Let (Ui,j ) be as in (21) and recall the defi-
nition of Δ from (25). Let Rk,t

x be the measure on U
∗
k such that for every bounded measurable

function F :U∗
k →R,

Rk,t
x (F ) := Ex

[ ∑
v1<···<vk

vi∈Npl
t

F
(
U( v)

)]
.

Then

Rk,t
x (F ) = h(x)Lk,t

x (F ),

where, by a slight abuse of notation, we write

(27) Lk,t
x (F ) = tk−1Qk,t

x (ΔF) = tk−1Qk,t
x (ΔF

(
(Ui,j ), (ζVi

)
)
.

In order to prove this result, we first show that Lk,t
x (F ) satisfies a recursive relation for

functionals F :U∗
k →R of the product form

(28) F(U) = 1{|T0|=k−n,|T1|=n}f
(
τ(U)

)
ψ0
(
T0(U)

)
ψ1
(
T1(U)

)
,

where n ∈ [k − 1] and f : R+ → R, ψ1 : U∗
n → R, ψ0 : U∗

k−n → R are bounded measurable
functions.

PROPOSITION 8. Let t > 0 and x > 0. For functionals F of the product form (28),

Lk,t
x (F ) =

∫ t

0
f (s)Ex

[
r(ζt−s)h(ζt−s)L

n,s
ζt−s

(ψ0)L
k−n,s
ζt−s

(ψ1)
]
ds.

PROOF. This result is a direct consequence of the construction of the k-spine tree (see
Section 2.4). Indeed, this construction implies that:

(i) The depth τ of the deepest branching point is distributed as max(U1, . . . ,Uk−1),
where the Ui ’s are i.i.d. random variables uniform on [0, t]. The density of this variable
is given by s �→ k−1

tk−1 s
k−2.

(ii) The index I of the deepest branch is chosen uniformly at random in [k − 1].
(iii) Let us condition on I = n, xMRCA(T ) = y and τ = s. Then the left and right subtrees

T0 and T1 are independent and T0 (resp. T1) is distributed as a n- (resp. k − n-) spine tree
with depth s. By the Markov property, both spine trees are rooted at y.

(iv) xMRCA(T ) is distributed as the 1-spine at time t − s.
(v) If xMRCA(T ) = y, τ = s, then

Δ(T ) = r(y)h(y)Δ(T0)Δ(T1).

Putting all of this together, we obtain

Qk,t
x (ΔF)

=
∫ t

0
f (s)

(k − 1)sk−2

tk−1︸ ︷︷ ︸
(i)

∫
y∈Ω

(iv)︷ ︸︸ ︷
qt−s(x, y) r(y)h(y)︸ ︷︷ ︸

(v)

1

k − 1︸ ︷︷ ︸
(ii)

Qn,s
y (Δψ0)Q

k−n,s
y (Δψ1)︸ ︷︷ ︸

(iii)

dy ds

= 1

tk−1

∫ t

0
f (s)Ex

[
r(ζt−s)h(ζt−s)

(
sn−1Qn,s

y (Δψ0)
)(

sk−n−1Qk−n,s
y (Δψ1)

)]
.

This concludes the proof of the proposition. □

We now move to the proof of our many-to-few formula in the case k = 1.
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LEMMA 2 (Many-to-one lemma). For every bounded measurable function f

Ex

[∑
v∈Nt

f (xv)

]
=
∫
Ω

f (y)qt (x, y)
h(x)

h(y)
dy = h(x)Q1,t

x

(
Δf (ζt )

)
,

with Δ = 1
h(ζt )

and ζt is the unique leaf of the 1-spine tree of depth t .

PROOF. The proof is similar to that of Lemma 1. One can readily check that pt(x, y) :=
qt (x, y)h(x)

h(y)
is the fundamental solutions of the PDE

{
∂tu(t, y) =A∗u(t, y), y ∈ Ω,

u(t, y) = 0, y ∈ ∂Ω,

where A∗ := 1
2∇ · a∇ − b · ∇ −∇ · b + r(x) is the adjoint of the differential operator A. □

We are ready to address the case k > 2.

PROOF OF PROPOSITION 7. We will show the result by induction on k. The case k = 1
is the many-to-one lemma (see Lemma 2). For k ≥ 2, it is sufficient to prove the result for
functionals F of the product form (28). Indeed, this set of functions is separating for U∗

k .
Consider the branching diffusion starting from a singe particle at x up to time t . Let s1 <

s2 < · · · be the successive branching times of the process and let xi be the spatial coordinate
of the branching particle at time si . Recall that our branching diffusion is planarised so that
we can distinguish between the left and right descendants of (xi, ti). For every i, let N0,i

(resp. N1,i ) be the the set of left (resp. right) descendants of (xi, si). Let F be a functional of
the product form (28). Then, we have

Rk,t
x (F ) = Ex

[ ∑
i:si<t

f (t − si)
∑

v1<···<vn
vj∈N0,i ,|vj |=t

ψ0
(
U( v)

) ∑
w1<···<wk−n

wj∈N1,i ,|wj |=t

ψ1
(
U(  w)

)]
.

We also recall that the particles branch independently with rate r(x) when at x. This means
that, given N pl

t−s and (xv)v∈Npl
t−s

, the probability that the particle at xv branches between times

t − s and t − s + h is r(xv)h + o(h). Conditioning on N pl
t−s and using the Markov property,

the previous formula yields that

Rk,t
x (F ) = Ex

[∫ t

0
f (s)

∑
v∈Npl

t−s

r(xv)

×Exv

[ ∑
v1<···<vn|vj |=s

ψ0
(
U( v)

)]
Exv

[ ∑
w1<···<wk−n|wj |=s

ψ1
(
U(  w)

)]
ds

]
.

By the many-to-one formula, the RHS is equal to

h(x)

∫ t

0
f (s)

∫
y∈Ω

r(y)
qt−s(x, y)

h(y)

×Ey

[ ∑
v1<···<vn|vj |=s

ψ0
(
U( v)

)]
Ey

[ ∑
w1<···<wk−n|wj |=s

ψ1
(
U(  w)

)]
dy ds.
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By induction

Ey

[ ∑
v1<···<vn,|vj |=s

ψ0
(
U( v)

)]= h(y)sn−1Qn,s
y (Δψ0),

Ey

[ ∑
w1<···<wk−n,|wj |=s

ψ1
(
U(  w)

)]= h(y)sk−n−1Qk−n,s
y (Δψ1).

As a consequence,

Rk,t
x (F ) = h(x)

∫ t

0
f (s)sk−2

∫
y∈Ω

r(y)
qt−s(x, y)h(y)2

h(y)
Qn,s

y (Δψ0)Q
k−n,s
y (Δψ1) dy ds

= h(x)tk−1
∫ t

0
f (s)

sk−2

tk−1

∫
y∈Ω

r(y)qt−s(x, y)h(y)

×Qn,s
y (Δψ0)Q

k−n,s
y (Δψ1) dy ds.

It remains to show that the RHS of the above is equal to h(x)tk−1Qk,t
x (ΔF). Yet, this is

precisely the content of Proposition 8. □

PROOF OF THEOREM 5. Let [X,d, ν] be a random mmm-space such that the support of
ν is a set of cardinality k a.s. In our case, the support is given by the set of k leaves of the
sample. Define

∀U ∈U
∗
k, F (U) = 1

k!
∑
σ∈Sk

∏
i,j

ψi,j

(
d(Vσi

,Vσj
)
)∏

i

ϕi(xVσi
),

where (V1, . . . , Vk) is an arbitrary labelling of the support of ν and Sk is the set of permuta-
tions of [k]. Note that this functional does not depend on the labelling so that F is constant
on a given isometry class.

We have

Ex

[ ∑
v1 �=···�=vk∈Nt

∏
i,j

ψi,j

(
d(vi, vj )

)∏
i

ϕi(xvi
)

]

= Ex

[
k! ∑

v1<···<vk∈Npl
t

1

k!
∑
σ∈Sk

∏
i,j

ψi,j

(
d(vσi

, vσj
)
)∏

i

ϕi(xvσi
)

]

= k!Ex

[ ∑
v1<···<vk∈Npl

t

F
(
U( v)

)]
.

The result immediately follows from Proposition 7. □

3.2. Subcritical operators. Let G and A be as in (22) and (24). Assume that there exist a
positive function H : Ω →R and a real positive number w > 0 such that

(29) AH(x) =−wH(x) for x ∈ Ω, H(x) = 0 for x ∈ ∂Ω.

(Note that, in this case, the differential operator A is subcritical in the sense of [28]; see
Proposition 4.2.3 in [28].) Then h(t, x) := ewtH(x) is harmonic for the operator

Af (t, x) := ∂tf (t, x)+Af (t, x), (t, x) ∈ (0,∞)×Ω,

f (t, x) = 0, (t, x) ∈ (0,∞)× ∂Ω,
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defined on the domain (0,∞)×Ω. The generator of the 1-spine process (t, ζt ) associated to
the critical operator A is thus given by (see Definition 6)

(30)
A(hf )

h
(t, x) = ∂tf (t, x)+ Gf (t, x)+∑

i,j

ai,j (x)
∂xj

h(t, x)

h(t, x)
∂xi

f (t, x).

We write Q
k,t
(s,x) for the distribution of the k-spine tree of depth t rooted at (s, x).

By a slight abuse of notation, we will often drop the time component (that is trivial) and
refer to the spatial component ζt as the 1-spine process of the branching diffusion. The gen-
erator of the spatial process ζ is given by

A(Hf )

H
= Gf (x)+∑

i,j

ai,j (x)
∂xj

H(x)

H(x)
∂xi

f (x), x ∈ Ω,

f (x) = 0, x ∈ ∂Ω.

(31)

Similarly, we will write Qk,t
x for the law of the k-spine tree of depth t rooted at (0, x).

A direct application of Theorem 5 entails the following result.

COROLLARY 1 (Many-to-few). Let t > 0. Recall the definition of Mt from (23). Let
(ϕi; i ∈ [k]) and (ψi,j ; i, j ∈ [k]) be measurable bounded functions. Consider the product
polynomial defined as

∀M = [X,d, ν], Ψ(M) :=
∫ ∏

i,j

1{vi �=vj }ψi,j

(
d(vi, vj )

)∏
i

ϕi(xi)ν( dvi ⊗ dxi).

Then

Ex

[
Ψ
(
ML

t

)]= k!h(0, x)tk−1Qk,t
x

(
Δ
∏
i,j

ψi,j (Uσi,σj
)
∏

Vi∈L
ϕi(ζVσi

)

)
,

where Qk,t
x ≡ Q

k,t
(0,x), the matrix (Ui,j ) is as in (21), σ is an independent permutation of [k],

(32) Δ :=∏
v∈B

r(ζv)h
(|v|, ζv

) ∏
v∈L

1

h(t, ζv)
,

and |v| refers to the time component of the branching point v ∈ B.

PROPOSITION 9 (Recursive definition of the biased spine measure). Recall the definition
of the 1-spine process (t, ζt )t≥0 from (30). We also recall from (27) that, for F :U∗

k →R and
s, t > 0,

Lk,t
(s,x)(F ) = tk−1Q

k,t
(s,x)

(
ΔF(Ui,j , ζVi

)
)
,

is a measure on the k-spine trees of depth t rooted at (s, x), referred to as the biased spine
measure. To ease the notation, we write Lk,t

x for the measure on the k-spine trees of depth t

rooted at (0, x). Then, the family of biased spine measures L is such that:

• for every bounded function f : Ω →R,

(33) ∀x ∈ Ω,∀t > 0, L1,t
x (f ) = e−wt

Ex

[
f (ζt )

]
,

• for all test functions of the product form (28), we have

∀x ∈ Ω,∀t > 0,
(34)

Lk,t
x (F ) =

∫ t

0
f (s)e−w(t−s)

Ex

[
r(ζt−s)H(ζt−s)L

n,s
ζt−s

(ψ0)L
k−n,s
ζt−s

(ψ1)
]
ds,

where H is as in (29).
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PROOF. We first remark that

h(t − s, y) = ew(t−s)h(0, y) = ew(t−s)H(y).

Moreover, note that

Q
ki,s
(t−s,y)(Δψi) = e−w(t−s)Q

ki,s
(0,y)(Δψi), i = 0,1, (k0, k1) = (n, k − n).

The latter formula is obtained by shifting time by t − s in the ki − 1 factors h and in the ki

factors 1
h

of Δ (see equation (32)). Equation (34) then follows from Proposition 8. For k = 1,
(33) follows from Corollary 1. □

3.3. The BBM in an interval. We now apply the previous setting to the problem at hand
and consider the BBM XL defined in Section 1.1.

LEMMA 3. Let μ,λ1, λ
∞
1 , r(x) be defined as in Section 1. Consider the operator

Af (t, x) = ∂tf (t, x)+ 1

2
∂xxf (t, x)−μ∂xf (t, x) ∀(t, x) ∈ (0,∞)× (0,L),

f (t,0) = f (t,L) = 0 ∀t ∈ (0,∞).

Then, the function (t, x) �→ h(t, x) defined in (20) is harmonic for the operator A and

(35)
A(hf )

h
(t, x) = ∂tf (t, x)+ 1

2
∂xxf (t, x)+ v′

1(x)

v1(x)
∂xf (t, x).

The 1-spine process (ζt ) is the diffusion whose generator is given by

1

2
∂xxf (x)+ v′

1(x)

v1(x)
∂xf (x), x ∈ (0,L), f (0) = f (L) = 0.

PROOF. This is a straightforward consequence of (30) and (31). □

PROOF OF PROPOSITION 6. This is a direct consequence Corollary 1 after rescaling the
measure by N and time by N . □

4. Spectral theory. In this section, we examine the density of particles in XL. In Sec-
tion 4.1 and Section 4.2, we give precise estimates on the heat kernel pt associated to (A)
and compute the relaxation time of the system. All the lemmas in these sections hold under
(Hp) and do not require the additional assumption (Hfp). Sections 4.3 and 4.4 are aimed at
quantifying the fluctuations in XL and are specific to the fully pushed regime.

4.1. Preliminaries. Consider the Sturm–Liouville problem (SLP) together with bound-
ary conditions (BC). Let us first recall some well-known facts about Sturm–Liouville theory
following [36], Section 4.6:

(i) A solution of (SLP) is defined as a function v : [0,L] → R such that v and v′ are
absolutely continuous on [0,L] and satisfies (SLP) a.e. on (0,L). In particular, any solution
v is continuously differentiable on [0,L]. Since W is continuous on [0,L], the solutions are
also twice differentiable on [0,L] and (SLP) holds for all x ∈ (0,L).

(ii) A complex number λ is an eigenvalue of the Sturm–Liouville problem (SLP) with
boundary conditions (BC) if equation (SLP) has a solution v which is not identically zero on
[0,L] and that satisfies (BC). This set of eigenvalues will be referred to as the spectrum.
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(iii) It is known that this set of eigenvalues is infinite, countable and it has no finite
accumulation point. Besides, it is upper bounded and all the eigenvalues are simple and real
so that they can be numbered

λ1 > λ2 > · · · > λk > · · · ,

where

λk →−∞ as k →+∞.

We will denote by K the largest integer such that

λk > 0.

(iv) As a consequence, the eigenvector vk associated to λk is unique up to constant mul-
tiplies. Furthermore, the sequence of eigenfunctions can be normalised to be an orthonormal
sequence of L2([0,L]). This orthonormal sequence is complete in L2([0,L]) so that the fun-
damental solution of PDE (B) can be written as

(36) gt (x, y) =
∞∑

k=1

eλkt
vk(x)vk(y)

‖vk‖2 .

(v) The function v1 does not change sign in (0,L). More generally, the eigenfunction
vk has exactly k − 1 zeros on (0,L).

(vi) The eigenvalues and the eigenvectors of (SLP) with boundary conditions (BC) can
be characterised through the Prüfer transformation (see [36], Section 4.5). For all λ ∈ R,
consider the Cauchy problems

(37) θ̇λ(x) = cos2(θλ(x)
)+ (W(x)− 2λ

)
sin2(θλ(x)

)
, θλ(0) = 0,

and

(38) ρ̇λ(x) =
(

1 −W(x)

2
+ λ

)
sin
(
2θλ(x)

)
ρλ(x), ρλ(0) = 1.

Note that (37) and (38) have a unique solution defined on [0,+∞) for each λ ∈ R. The
eigenvalue λk is characterised as the unique solution of θλ(L) = kπ .

Note that for all λ∗ < λ,

(39) 0 ≤ θλ(x) ≤ θλ∗(x) ∀x ∈ [0,L].
If uk is the eigenvector associated to λk such that u′

k(0) = 1, then

(40) uk(x) = ρλk
(x) sin

(
θλk

(x)
)
, u′

k(x) = ρλk
(x) cos

(
θλk

(x)
) ∀x ∈ [0,L].

(vii) Denote by λ̄1 > λ̄2 > · · · the eigenvalues of the Sturm–Liouville problem

1

2
v′′(x)+ 1

2
‖W‖∞1[0,1](x)v(x) = λv(x), v(0) = v(L) = 0

and by λ1 > λ2 > · · · the eigenvalues of the Laplacian with homogeneous Dirichlet boundary
conditions (at 0 and L). Then, for all k ∈N,

(41) λk ≤ λk ≤ λ̄k.

See [36], Theorem 4.9.1, for a proof of this comparison principle. Recall that

(42) λk =−k2π2

2L2 ,

and that the eigenvalues (λ̄k) have been fully characterised in [35], Section 2.1. In particular,
we know that there exists K̄ ≥ K (that does not depend on L) such that, for L large enough,
λ̄k > 0 for all k ≤ K̄ and λ̄k < 0 for all k > K̄ . See (14) for a characterisation of (λ̄k)k>K

when ‖W‖∞ = 10.
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(viii) For fixed k ∈N, the eigenfunction λk is an increasing function of L (see, e.g., [36],
Theorem 4.4.4). Since λ1 converges, the kth eigenvalue λk also converges. Furthermore, by
(41), this implies that the number of positive eigenvalues K is fixed for L large enough. For
k ≤ K , this limit, that we denote by λ∞

k , is positive and we have

λ∞
1 ≥ λ∞

2 ≥ λ∞
3 ≥ · · · ≥ λ∞

K .

We will prove below that these inequalities are strict inequalities.

Throughout the article, the eigenvector v1 will be chosen such that v1(1) = 1 and u1 in such
a way that u′

1(0) = 1. Note that for x ∈ [1,L], we have

(43) v1(x) = sinh
(√

2λ1(L− x)
)
/ sinh

(√
2λ1(L− 1)

)
.

On [0,1], the eigenvector u1 is the unique solution of the Cauchy problem

(44) u′′(x) = (2λ1 −W(x)
)
u(x), u(0) = 0, u′(0) = 1.

LEMMA 4 ([36], Theorem 4.5.1). Let a, b, c ∈ C([0,1]). Let θ and ρ be the solutions of
the Cauchy problems{

θ̇ (x) = a(x) cos
(
θ(x)
)2 + b(x) sin

(
θ(x)
)2

, θ(0) = 0,

ρ̇(x) = c(x) sin
(
2θ(x)

)
ρ(x), ρ(0) = 1.

Let Φ be the application from (C([0,1])3,‖ · ‖∞) to (C(0,1)2,‖ · ‖∞) which maps (a, b, c)

to the solutions (ρ, θ) of the Cauchy problems. Then Φ is continuous.

The next result is a generalisation of Proposition 1.

LEMMA 5. Assume that (Hp) holds. Then

(45) λ∞
1 − λ1 = βe2β

‖v∞
1 ‖2 e−2βL + o

(
e−2βL)= O

(
1

Nα−1

)
.

As a consequence, for all 0 < t ≲ N ,

(46) h(t, x) = (1 +O
(
e(μ−3β)L))h(0, x), x ∈ [0,L].

In addition,

(47) v1(x) � (1 ∧ x ∧ (L− x)
)
e−βx, x ∈ [0,L],

and we have v11[0,L] → v∞
1 as L → ∞ pointwise and in L2(R+). The function v1 also

converges uniformly on compact sets and in C1([0,1]). Moreover,

v∞
1 (x) = e−β(x−1), x ≥ 1.

PROOF. We first prove the convergence of u1. Recall from (40) that

∀x ∈ (0,L), u1(x) = ρλ1(x) sin
(
θλ1(x)

)
, u′

1(x) = ρλ1(x) cos
(
θλ1(x)

)
.

By Lemma 4, u1 converges to u∞
1 = ρλ∞

1
sin(θλ∞

1
) in C1([0,1]) as L → ∞. The pointwise

convergence on [0,∞] follows from the fact (see (iv) and (43)) that

(48) u1(x) = u1(1)
sinh(

√
2λ1(L− x))

sinh(
√

2λ1(L− 1))
∀x ∈ [1,L].

The convergence in L2 follows from the uniform convergence on [0,1] and the explicit form
of u1 on [1,L]. The same arguments show that u1 converges uniformly on compact sets.
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It follows from the integrated version of (44) that u′′
1 converges to (u∞

1 )′′ in C([0,1]) and
that u∞

1 is the unique solution of the Cauchy problem

(49)
1

2
u′′(x)+ 1

2
u(x) = λ∞

1 u(x), x ∈ (0,1), u1(0) = 0, u′
1(0) = 1.

As a consequence, u∞
1 (x) �= 0 for every x ∈ (0,1). Indeed, u∞

1 ≥ 0 so that if u∞
1 (x0) = 0 for

some x0 ∈ (0,1) then u∞
1 reaches a minimum at x0 and (u∞

1 )′(x0) = 0. Since 0 is a solution of
the Cauchy problem with initial condition (u1(x0), u

′
1(x0)) = (0,0), this implies that u∞

1 ≡ 0
on [0,L], which contradicts the fact that (u∞

1 )′(0) = 1. It easily follows that u∞
1 (x) � x on

[0,1]. This implies that u1(x) � x for L large enough. Indeed, if we consider xL
0 := inf{x ∈

[0,1] : u′
1(x) < 1

2} (resp. x0 for u∞
1 ) and wL := min{u1(x) : x ∈ [xL

0 ,1]} (resp. w for u∞
1 ),

we see (using the uniform convergence of u1 and u′
1 on [0,1]) that xL

0 → x0 and wL → w

as L → ∞. One can then deduce that for L large enough, u1(x) ≥ w∧1
2 x for all x ∈ [0,1].

Similarly, one can show that u1(x) ≲ x.
The convergence of v1 then follows from the relation v1(x) = u1(x)/u1(1) (see (iv)) and

the convergence of u1. Finally, equation (47) stems from our bounds on u1 in [0,1] and from
(48).

Let us now prove the first part of the lemma. According to [36], Theorem 4.4.4, L �→ λ1(L)

is differentiable on (1,+∞) and we have

(50) λ′
1(L) = 1

2

|u′
1(L)|2
‖u1‖2 .

Yet,

u′
1(L) = u1(1)v′

1(L) =−u1(1)
√

2λ1
(
sinh
√

2λ1(L− 1)
)−1 = O

(
e−

√
2λ1L
)
.

Thus,

λ′
1(L) = O

(
e−2

√
2λ1L
)
.

Define L̃ such that λ1 >
λ∞

1
2 for all L > L̃. Hence, for L > L̃

λ∞
1 − λ1 ≤ C

∫ ∞
L

e
−2
√

λ∞
1 L′

dL′ ≤ Ce
−2
√

λ∞
1 L

.

This implies that λ∞
1 − λ1 � 1

L
so that

sinh
(√

2λ1(L− 1)
)∼ 1

2
eβ(L−1), L →∞.

We then see from (50) that

λ′
1(L) = λ1

‖u1‖2 u1(1) sinh
(√

2λ1(L− 1)
)−2 ∼ 2β2

‖v∞
1 ‖2 e−2β(L−1).

Integrating this on L, we get that

λ∞
1 − λ1 ∼ βe2β

‖v∞
1 ‖2 e−2βL, L →∞.

Finally, equation (46) follows from (20). □

COROLLARY 2. Assume that (Hp) holds. Let k ∈ N. Let g : [0,∞)k → R and f :
[0,∞)2k →R be continuous bounded test functions. Let t > 0. We have∫

g(x1, . . . , xk)

k∏
i=1

Π(dxi) →
∫

g(x1, . . . , xk)

k∏
i=1

Π∞(dxi) as L →∞,
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and uniformly in (t1, . . . , tk) ∈ [0, T ]k , as N goes to ∞, we have∫
f
(
x1, . . . , xk, h(t1N,x1), . . . , h(tkN,xk)

) k∏
i=1

Π(dxi)

→
∫

f
(
x1, . . . , xk, h

∞(x1), . . . , h
∞(xk)

) k∏
i=1

Π∞(dxi).

PROOF. We restrict ourself to the case k = 1. The case k > 1 can be proved along the
same lines. We start with the first limit. We know from Lemma 5 that ‖v1‖→ ‖v∞

1 ‖. Hence,
it is sufficient to prove that, as L →∞,∫

g(x1, . . . , xk)

k∏
i=1

v2
1(xi) dxi →

∫
g(x1, . . . , xk)

k∏
i=1

(
v∞

1
)2

(xi) dxi.

In addition, we remark from (43) (and a direct calculation) that

v1(x) ≤ v∞
1 (x) ∀x ∈ [1,L].

The result then follows from the dominated convergence theorem and the fact that v1 con-
verges to v∞

1 uniformly on [0,1]. The second limit follows from similar arguments, using
(46) and the dominated convergence theorem combined with a truncation argument for large
values of h. □

LEMMA 6. Assume that (Hp) holds. For all k ∈N, we have∣∣uk(x)
∣∣≤ e3c̄e|λk |(1 + 2|λk|)x, x ∈ [0,1],

with c̄ = 1 + ‖W‖∞.

PROOF. First, note that for all λ ∈R, the solution ρλ of the Cauchy problem (38) can be
expressed as

ρλ(x) = ρλ(0) exp
(∫ x

y=0

(
1 −W(y)

2
+ λ

)
sin
(
2θλ(y)

)
dy

)
, x ∈ [0,1].

Therefore,

(51) 0 ≤ ρλ(x) ≤ exp
(
c̄ + |λ|), x ∈ [0,1].

On the other hand, note that for all λ ∈R, the unique solution θλ of (37) is such that

θ̇λ(x)− θ̇0(x) ≤ ∣∣θ̇λ(x)− θ̇0(x)
∣∣≤ 2c̄

∣∣θλ(x)− θ0(x)
∣∣+ 2|λ|, x ∈ [0,1],

where we use that cos2 and sin2 are 2-Lipschitz. Moreover, recall from (39) that for all λ ≤ 0,
θλ ≥ θ0 on [0,L]. Hence, for all λ < 0, we have

θλ(x)− θ0(x) ≤−2λx +
∫ x

y=0
2c̄
(
θλ(y)− θ0(y)

)
dy, x ∈ [0,1],

and Grönwall’s lemma yields

(52) θλ(x) ≤ θ0(x)− 2λx exp(2c̄x), x ∈ [0,1].
In addition, we see from (37) that 0 ≤ θ0(x) ≤ c̄x for all x ∈ [0,L], so that

(53) θλ(x) ≤ (c̄ + 2|λ|e2c̄)x, x ∈ [0,1],
for all λ < 0. For λ > 0, we use that 0 ≤ θλ(x) ≤ θ0(x) for all x ∈ [0,L] (see (39)) so that
the last inequality still holds for positive λ. We finally get the result by combining (40), (51),
(53) and the facts that | sin(x)| ≤ x for all x ≥ 0 and that c̄ ≤ e2c̄. □
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LEMMA 7. There exists a constant c7 > 0 such that for sufficiently large L, we have√−λK+1L > c7.

PROOF. Recall that λK+1 ≤ 0 ≤ λK , θ0 and θλK+1 are nondecreasing functions, θλK
(L) =

Kπ and that θλK+1(L) = (K + 1)π . Moreover, we see from (39) that

θλK
≤ θ0 ≤ θλK+1 on [0,L].

Hence, θ0(L) converges to (K + 1
2)π (i.e., the unique fixed point of the ODE (37) belonging

to [Kπ, (K + 1)π]). It follows that θ0(1) ∈ ((K − 1
2)π, (K + 1

2)π] since (K − 1
2) is also a

fixed point for the dynamics of θ0.
We now argue by contradiction and assume that limL→∞

√−2λK+1L = 0. Let ε :=√−λk+1. We see from (52) that for L large enough

(54) 0 ≤ θλK+1(1)− θ0(1) ≤ C|λK+1| ≤ Cε2.

Let Iε := θ−1
λK+1

((K + 1
2)π, (K + 1

2)π + ε)) ∩ [1,L] = [x0, xε]. Recalling that θ0(1) ≤ (K +
1
2)π and using (54), we see that xε > 1. Define D(x) := θλK+1(x) − (K + 1

2)π . Note that
D(x0) ∈ [0,Cε2]. In order see this, we distinguish two cases (1) if θ0(1) = (K + 1

2)π then
x0 = 1. Using the fact that θλK+1 > θ0, and (54) entails the result; (2) if θ0(1) < (K+ 1

2)π then
x0 > 1 (for L large enough) and D(x0) = 0. Since D is nondecreasing, we have |D(x)| ≤ ε

for x ∈ [x0, xε]. Furthermore,∣∣Ḋ(x)
∣∣≤ sin2(D(x)

)+ 2|λK+1| cos2(D(x)
)≤ Cε2.

Hence, for L large enough

ε

2
≤ ε −Cε2 ≤ D(xε)−D(x0) ≤ Cε2(xε − x0) ≤ Cε2L,

which leads to a contradiction since εL → 0 as L →∞. □

LEMMA 8. Assume that (Hp) holds. There exists c8 > 0 such that for all k ∈N,

‖uk‖2 ≥ c8

(
1 ∧ 1

|λk|
)
.

PROOF. Define g1 : [−1, λ∞
1 ] → [0,+∞), λ �→ ∫ 1

x=0 ρλ(x)2 sin2(θλ(x)) dx. By Lem-
ma 4. the integrand is continuous in x for every λ. Using (51), it can be bounded by ec̄+1∨|λ∞

1 |
for λ ∈ [−1, λ∞

1 ]. By a standard continuity theorem, the function g1 is continuous and it at-
tains a positive minimum at some λ0.

Let us now consider λ < −1 and remark that∫ 1

x=0
ρλ(x)2 sin

(
θλ(x)

)2
dx ≥

∫ 1
|λ|

x=0
ρλ(x)2 sin

(
θλ(x)

)2
dx

≥ 1

|λ|
∫ 1

x=0
ρλ

(
x/|λ|)2 sin

(
θλ

(
x/|λ|))2 dx.

(55)

For all x ∈ [0,1], define ρ̃λ(x) = ρλ(x/|λ|) and θ̃λ(x) = θλ(x/|λ|). These functions corre-
spond to the unique solutions of the Cauchy problems

˙̃
θλ(x) = 1

|λ|
(
cos2(θ̃λ(x)

)+ (W (x/|λ|)− 2λ
)

sin2(θ̃λ(x)
))

, θ̃λ(0) = 0,
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and

˙̃ρλ(x) = 1

|λ|
((

1 −W(x/|λ|)
2

+ λ

)
sin
(
2θ̃λ(x)

)
ρ̃λ(x)

)
, ρ̃λ(0) = 1,

on [0,1]. As before, g2 : [−1,0] → [0,+∞), λ �→ ∫ 1
x=0 ρ̃1/λ(x)2 sin2(θ̃1/λ(x)) dx attains its

minimum m at some positive value. This combined with (55) shows that g3 : (−∞,−1] →
[0,+∞), λ �→ ∫ 1

x=0 ρλ(x)2 sin(θλ(x))2 dx satisfies g3(λ) ≥ m
|λ| . We conclude the proof of the

lemma by recalling from (40) that

∀k ≥ 1; ‖uk‖2 =
∫ L

0
ρλk

(x)2 sin
(
θλk

(x)
)2

dx ≥
∫ 1

0
ρλk

(x)2 sin
(
θλk

(x)
)2

dx. □

PROPOSITION 10. Assume that (Hp) holds. There exists a constant c10 such that for L

large enough, for all x ∈ [0,L],

∀k ≤ K,
1

‖uk‖
|uk(x)|
u1(x)

≤ c10e
βx,

∀k > K,
1

‖uk‖
|uk(x)|
u1(x)

≤ c10e
βxe|λk |(1 + 2|λk|)2.

PROOF. Let us first consider the case k ≤ K . In this case, one can show that uk converges
to a limiting function u∞

k in L2 and that

∣∣uk(x)
∣∣� (x ∧ 1 ∧ (L− x)

)
e
−
√

2λ∞
k x on [0,L],

by applying similar arguments to those used to prove (47). This shows the result for k ≤ K .
We now turn to the case k > K . First, we use Lemma 6 along with Lemma 8 to bound

uk/‖uk‖ on [0,1]: there exists c2 > 0 such that

(56)
|uk(x)|
‖uk‖ ≤ c2e

|λk |(1+2|λk|)(1∨|λk|)1/2
x ≤ c2e

|λk |(1+2|λk|)2x ∀x ∈ [0,1], k > K.

On [1,L], we have uk(x) = dk sin(
√−2λk(L− x)) for some dk ∈R (see (44)). Hence,

‖uk‖2 ≥
∫ L

x=1
uk(x)2 dx = d2

k (L− 1)

(
1 − sin(2

√−2λk(L− 1))

2
√−2λk(L− 1)

)
.

Recall from Lemma 7 that there exists c3 > 0 such that(
1 − sin(2

√−2λk(L− 1))

2
√−2λk(L− 1)

)
> c3 ∀k > K.

Using that | sin(x)| ≤ 1 ∧ x for all x ≥ 0, we get that for sufficiently large L,

(57)
|uk(x)|
‖uk‖ ≤ 1√

c3(L− 1)
≤ 1 ∀x ∈ [1,L− 1],

and for all x ∈ [L− 1,L],

(58)
|uk(x)|
‖uk‖ ≤ 1√

c3(L− 1)

√−2λk(L− x) ≤√−2λk(L− x) ≤ (1 + 2|λk|)2(L− x).

Equations (56), (57) and (58) and Lemma 5 yield the result for k > K . □

PROPOSITION 11 (Spectral gap). Assume that (Hp) holds. Then, λ∞
1 > λ∞

2 .
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PROOF. Assume, for the sake of contradiction, that λ∞
1 = λ∞

2 . Then, it follows from
Lemma 4 that u2 converges to u∞

1 (see (49) in C1([0,1]). Recall from Lemma 5 that u∞
1 (x) >

0 for all x ∈ (0,1]. On the other hand, we know from (v) that u2 has a single 0, located in
(0,1] (it can not be located in [1,L) since u2(x) is a multiple of sinh(

√
2λ2(L − x)) in

this interval). We denote by xL the position of this 0 and remark that u2(2xL) < 0. This
stems from (v), the fact that u2 ≥ 0 on [0, xL] and that u′

2(xL) �= 0 (here we use the same
argument as in the proof of Lemma 5 to show that u∞

1 > 0). Hence, since u2 converges to a
positive function, xL → 0 as L →∞, and one can show that u2(2xL)/(2xL) < 0 converges
to (u∞

1 )′(0) > 0 (e.g., using the mean value theorem). This leads to a contradiction. □

4.2. Heat kernel estimate.

PROPOSITION 12. Assume that (Hp) holds. There exists a constant c12 > 0 such that for
L large enough and t > c12L, we have∣∣pt(x, y)− h(0, x)h̃(t, y)

∣∣≤ e−βLh(0, x)h̃(t, y), x, y ∈ [0,L].
Recalling from Lemma 1 and Proposition 5 that qt (x, y) = h(t,y)

h(0,x)
pt (x, y) and Π(x) =

h(t, x)h̃(t, x), this implies that for L large enough and t > c12L,∣∣qt (x, y)−Π(y)
∣∣≤ e−βLΠ(y), x, y ∈ [0,L].

PROOF. By Proposition 10, for L large enough and t > 2,

K∑
k=2

eλkt
1

‖uk‖2

uk(x)uk(y)

v1(x)v1(y)
≤ K(c10)

2e2βL+λ∞
2 t ,

and
∞∑

k=K+1

eλkt
1

‖uk‖2

uk(x)uk(y)

v1(x)v1(y)
≤ (c10)

2e2βL
∞∑

k=K+1

(
1 + 2|λk|)4eλk(t−2).(59)

In order to evaluate the latter sum, we rely on the comparison principle (41). First, assume
that ‖W‖∞ �= (k − 1

2)2π2, ∀k ∈N. Define

Ai = 1

2

((
K̄ + 1

2
+ i

)2
− ‖W‖∞

)
, Ni =

⌊
(L− 1)

π

√
2Ai + 1

2

⌋
+ i,

for all i ≥ 0 and A−1 = N−1 = 0. One can show by an explicit calculation that for all j ∈ N

such that Ni−1 < j ≤ Ni , we have

(60) λK̄+j ∈ (−Ai,−Ai−1).

We refer to [35], Lemma 2.1, for further details on this calculation. If ‖W‖∞ = (k − 1
2)2π2

for some k ∈ N, one can replace ‖W‖∞ by ‖W‖∞ + ε for some small ε > 0 and get similar
estimates. We now use (41), (42) and (60) to bound the sum on the RHS of (59). We get that
for L large enough,

∞∑
k=K+1

(
1 + 2|λk|)4eλk(t−2)

≤
K̄∑

k=K+1

(
1 + k2π2

L2

)4
+

∞∑
j=1

(
1 + (K̄ + j)2π2

L2

)4
e
λ̄K̄+j (t−2)
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≤ K̄

(
1 + K̄2π2

L2

)4
+

∞∑
i=0

Ni∑
j=Ni−1+1

(
1 + (K̄ + j)2π2

L2

)4
e
λ̄K̄+j (t−2)

≤ 2K̄ +
∞∑
i=0

(Ni −Ni−1)

(
1 + (K̄ +Ni)

2π2

L2

)4
e−Ai−1(t−2).

One can easily show that, for i ∈N, i2

2 ≲ Ai , Ni ≲ iL and Ni −Ni−1 ≲ iL. Therefore, there
exists c0, c1 > 0 such that

∞∑
k=K+1

(
1 + 2|λk|)4eλk(t−2) ≤ c0

(
1 +L

∞∑
i=0

i
(
1 + i2)4e−c1(i−1)2(t−2)

)
.

Note that
∑∞

i=0 i(1 + i2)4e−c1(i−1)2(t−2) <
∑∞

i=0 i(1 + i2)4e−c1(i−1)2
< ∞ for t > 3. Thus,

there exists c2 > 0 such that, for all L large enough, for all t > 3,
∞∑

k=K+1

(
1 + 2|λk|)4eλk(t−2) ≤ c2L.

Putting all of this together, we see that, for all L large enough, for all t > 3,
∞∑

k=2

eλkt
|vk(x)vk(y)|

‖vk‖2 ≤ (c10)
2v1(x)v1(y)e2βL(Keλ∞

2 t + c2L
)
.

Recalling that pt can be written as

pt(x, y) = eμ(x−y)e−λ∞
1 t

∞∑
k=1

eλk
|vk(x)vk(y)|

‖vk‖2 ,

(see (2) and (36)), that ‖v1‖→ ‖v∞
1 ‖ (see Lemma 5) and that λ∞

1 − λ∞
2 > 0 under (Hp) (see

Proposition 11), we obtain∣∣∣∣pt(x, y)− 1

‖v1‖2 e(λ1−λ∞
1 )t eμ(x−y)v1(x)v1(y)

∣∣∣∣
≤ CLe2βL−(λ1−λ∞

2 )t e(λ1−λ∞
1 )t eμ(x−y)v1(x)v1(y),

≤ CLe2βL− λ∞1 −λ∞2
2 t e(λ1−λ∞

1 )t eμ(x−y)v1(x)v1(y)

for all t > 3 and L large enough. This together with (20) concludes the proof of Proposi-
tion 12. □

4.3. Green’s function. The Green’s function can be expressed thanks to the fundamental
solutions of the ODE

(61)
1

2
u′′ + 1

2
W(x)u = λu.

Let ϕλ (resp. ψλ) be a solution of (61) such that ϕλ(0) = 0 (resp. ψλ(L) = 0). Define the
Wronskian as

ωλ = ψλ(1)ϕ′
λ(1)−ψ ′

λ(1)ϕλ(1).

Note that ϕλ and ψλ are unique up to constant multiplies. Without loss of generality, we can
set ψλ and ϕλ so that

(62) ψλ(x) = sinh(
√

2λ(L− x))

sinh(
√

2λ1(L− 1))
and ϕ′

λ(0) = v′
1(0).
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PROPOSITION 13. Let ξ > 0 and λ(ξ) ≡ λ := λ∞
1 + ξ . Define

Gξ(x, y) =
∫ ∞

0
e−ξ tpt (x, y) dt.

Then

(63) Gξ(x, y) =
{
(ωλ(ξ))

−1eμ(x−y)ψλ(ξ)(x)ϕλ(ξ)(y), 0 ≤ y ≤ x ≤ L,

(ωλ(ξ))
−1eμ(x−y)ϕλ(ξ)(x)ψλ(ξ)(y), 0 ≤ x ≤ y ≤ L.

PROOF. Recall the definition of g from (2) and define

Hλ(x, y) :=
∫ ∞

0
e−λtgt (x, y) dt.

By [7], page 19, Hλ is given by

Hλ(x, y) =
{
(ωλ)

−1ψλ(x)ϕλ(y), 0 ≤ y ≤ x ≤ L,

(ωλ)
−1ϕλ(x)ψλ(y), 0 ≤ x ≤ y ≤ L.

On the other hand, we see from (2) that

Hλ(x, y) =
∫ ∞

0
e−λtgt (x, y) dt = eμ(y−x)

∫ ∞
0

e(λ∞
1 −λ)tpt (x, y) dt.

This yields the result. □

LEMMA 9. Assume that (Hfp) holds and that 1
N

≲ ξ � 1
L

. Let λ(ξ) be as in Proposi-
tion 13. Then,

(64) ϕλ(ξ)(x) = v1(x)+O(ξ)(1 ∧ x)
(
eβx +Le−βx),

and

(65) ψλ(ξ)(x) = v1(x)+O(ξL)
(
1 ∧ (L− x)

)
e−βx.

In addition, we also have

ϕλ(ξ)(x) = (1 ∧ x)
(
O(1)e−βx +O(ξ)eβx),(66)

ψλ(ξ)(x) = O(1)
(
1 ∧ (L− x)

)
e−βx.(67)

PROOF. We know from Lemma 5 that e−2βL � N−1 ≲ ξ under (Hfp) so that λ(ξ) > λ1
for sufficiently large L.

We have

(68) ϕλ(ξ)(x)− v1(x) =
∫ x

z=0

∫ z

y=0

(
ϕ′′

λ(ξ)(y)− v′′
1 (y)
)
dy dz, x ∈ [0,1].

We know (see (SLP) and (61)) that

(69) ϕ′′
λ(ξ)(y)− v′′

1 (y) = (2λ(ξ)−W(y)
)(

ϕλ(ξ)(y)− v1(y)
)+ 2(λ− λ1)v1(y).

Besides, we see from Lemma 5 that 2(λ(ξ) − λ1)v1 = O(ξ). Hence, we obtain that for all
x ∈ [0,1],

∣∣ϕλ(ξ)(x)− v1(x)
∣∣≤ ∫ 1

z=0

∫ x

y=0

∣∣2λ(ξ) −W(y)
∣∣∣∣ϕλ(ξ)(y)− v1(y)

∣∣dy dz +Cξ

≤
∫ x

y=0

(
2λ∞

1 + ‖W‖∞)∣∣ϕλ(ξ)(y)− v1(y)
∣∣dy +Cξ.
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Grönwall’s lemma then yields

ϕλ(ξ)(x)− v1(x) = O(ξ), x ∈ [0,1].
Putting this together with (68) and (69), we get that

(70) ϕλ(ξ)(x)− v1(x) = O(ξ)x = O(ξ)(1 ∧ x)eβx, x ∈ [0,1].
Using a similar argument, one can easily show that

(71) ϕ′
λ(ξ)(1)− v′

1(1) = O(ξ).

Then, we see from (61) that, on [1,L], ϕλ(ξ) can be written as

ϕλ(ξ)(x) = ϕλ(ξ)(1)
sinh(

√
2λ(ξ)(L− x))

sinh(
√

2λ(ξ)(L− 1))
+Ae

√
2λ(ξ)(x−1) +Be−

√
2λ(ξ)(x−1),

for some A,B ∈ R. Applying this equality to x = 1, we see that A = −B . In addition, we
know that ϕλ(ξ)(1) = v1(1)+O(ξ) = 1+O(ξ) and one can show by an explicit computation
(e.g., using the mean value theorem on [1,L − 1] and expanding sinh(

√
2λ(ξ)(L − x)) =

sinh((
√

2λ1 +O(ξ))(L− x)) on [L− 1,L]) that

(72)
sinh(

√
2λ(ξ)(L− x))

sinh(
√

2λ(ξ)(L− 1))
= (1 +O(ξL)

)
v1(x), x ∈ [1,L].

Besides, a direct calculation shows that

ϕ′
λ(ξ)(1) =√

2λ

(
2A − ϕλ(ξ)(1)

cosh(
√

2λ(ξ)(L− 1))

sinh(
√

2λ(ξ)(L− 1))

)
.

Recalling from (71) that ϕ′
λ(ξ)(1) = v′

1(1) + O(ξ) with v′
1(1) = −√

2λ1/ tanh(
√

2λ1(L −
1)) and remarking that

√
2λ(ξ) =

√
2λ∞

1 (1 + O(ξ)),
√

2λ1 =
√

2λ∞
1 (1 + O(e−2βL)),

tanh(
√

2λ1(L − 1))−1 = 1 + O(e−2βL), tanh(
√

2λ(ξ)(L − 1))−1 = 1 + O(e−2βL) and that
e−2βL = O(ξ) under (Hfp), we get that

A = O(ξ).

Therefore,

ϕλ(ξ)(x) = (1 +O(ξL)
)
v1(x)+O(ξ) sinh

(√
2λ(ξ)(x − 1)

)
= v1(x)+O(ξL)(1 ∧ x)e−βx +O(ξ)(1 ∧ x)eβx, x ∈ [1,L].

Putting this together with (70) yields (64). Equation (66) can then be deduced from the first
part of the above: one can easily show that sinh(

√
2λ(ξ)(x − 1)) = O(1)(1∧ (x − 1))eβx for

all x ∈ [1,L]. We then use (70) to conclude.
We now move to the estimate on ψλ(ξ). We recall from (62) that

ψλ(ξ)(x) = sinh(
√

2λ(ξ)(L− x))

sinh(
√

2λ1(L− 1))
, x ∈ [1,L].

As for (72), one can show that

(73) ψλ(ξ)(x) = (1 +O(ξL)
)
v1(x), x ∈ [1,L].

The same argument also yields that ψ ′
λ(ξ)(1) = v′

1(1)+O(ξL).
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We now prove that this bound also holds on [0,1]. On [0,1], the function ψλ(ξ) also satisfies
(69). Hence, we get that for all x ∈ [0,1],

ψλ(ξ)(x)− v1(x)

= ψλ(ξ)(1)− v1(1)+
∫ x

z=1
ψ ′

λ(ξ)(z)− v′
1(z) dz

= ψλ(ξ)(1)− v1(1)︸ ︷︷ ︸
=O(ξL)

+
∫ x

z=1

(
ψ ′

λ(ξ)(1)− v′
1(1)︸ ︷︷ ︸

=O(ξL)

+
∫ z

y=1

(
ψ ′′

λ(ξ)(y)− v′′
1 (y)
)
dy

)
dz

= O(ξL)+
∫ x

z=1

∫ z

y=1

(
2λ(ξ)−W(y)

)(
ψλ(ξ)(y)− v1(y)

)
dy dz.

Applying Grönwall’s inequality in the same way as for ϕλ(ξ) we get that

ψλ(ξ)(x) = v1(x)+O(ξL), x ∈ [0,1].
This concludes the proof of the lemma. □

LEMMA 10. Assume that (Hfp) holds and that 1
N
≲ ξ � 1

L
. Let λ(ξ) be as in Proposi-

tion 13. Then,

ωλ(ξ) = ξ

(∫ L

y=0
v1(y)2 dy +O(ξL)

)
.

PROOF. Recall that qt (x, ·) = h(t,·)
h(0,x)

pt (x, ·) is a probability density function and that

h(t, y) = e(λ∞
1 −λ1)th(0, y). Thus, by definition of G (see Proposition 13),

(74)
∫ ∞

0
e−(ξ+(λ∞

1 −λ1))t qt (x, y) dt = h(0, y)

h(0, x)

∫ ∞
0

e−ξ tpt (x, y) dt = h(0, y)

h(0, x)
Gξ (x, y),

so that for ξ̃ = ξ + (λ∞
1 − λ1), we have

1

ξ̃
=
∫ ∞

0
e−ξ̃ t

=1︷ ︸︸ ︷∫ L

0
qt (x, y) dy dt = 1

h(0, x)

∫ L

0
h(0, y)Gξ (x, y) dy.

We see then from (63) that∫ L

y=0
h(0, y)Gξ (x, y) dy

= eμx

ωλ(ξ)

(
ψλ(ξ)(x)

∫ x

y=0
ϕλ(ξ)(y)v1(y) dy + ϕλ(ξ)(x)

∫ L

y=x
ψλ(ξ)(y)v1(y) dy

)
.

Using Lemma 5 and Lemma 9, and noting that for 0 < x1 < x2 < L, we have∫ x2

x1

e−2βy dy = O(1)
(
1 ∧ (x2 − x1)

)
,

we get that

ψλ(ξ)(x)

∫ x

y=0
ϕλ(ξ)(y)v1(y) dy = ψλ(ξ)(x)

∫ x

y=0

(
v1(y)2 +O(ξ)

(
1 +Le−2βy))dy

= ψλ(ξ)(x)

(∫ x

y=0
v1(y)2 dy +O(ξL)(1 ∧ x)

)
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= v1(x)

∫ x

y=0
v1(y)2 dy +O(ξL)

(
1 ∧ x ∧ (L− x)

)
e−βx

= v1(x)

(∫ x

y=0
v1(y)2 dy +O(ξL)

)
,

and

ϕλ(ξ)(x)

∫ L

y=x
ψλ(ξ)(y)v1(y) dy = ϕλ(ξ)(x)

∫ L

y=x

(
v1(y)2 +O(ξL)e−2βy)dy

= ϕλ(ξ)(x)

(∫ L

y=x
v1(y)2 dy +O(ξL)

(
1 ∧ (L− x)e−2βx))

= v1(x)

∫ L

y=x
v1(y)2 dy +O(ξL)

(
x ∧ 1 ∧ (L− x)

)
e−βx

= v1(x)

(∫ L

y=x
v1(y)2 dy +O(ξL)

)
.

Putting all of this together, we get that

ωλ(ξ) = ξ̃

(∫ L

0
v1(y)2 dy +O(ξL)

)
.

We conclude the proof by remarking that under (Hfp), ξ̃ = ξ + o(ξ). □

REMARK 5. For all t > 0, ∫ t

0
ps(x, y) ds ≤ eG 1

t
(x, y).

This follows from the fact that 1s∈[0,t] ≤ e
t−s
t for all 0 < s < t .

4.4. The number of particles escaping the bulk. In this section, γ denotes a real number
in (0,1]. We are interested in the expected number of particles reaching the level γL during
the time interval [0, tN]. The following lemma allows to prove that, for a suitable choice of
γ , this number is exponentially small (in L).

For t > 0, we denote by Rγ ([0, tN]) the number of particles whose ancestors did not reach
the level γL before time tN . We also define p

γ
t (x, y), v

γ
1 , λ

γ
1 and G

γ
ξ (x, y) (as well as ϕ

γ
λ(ξ),

ψ
γ
λ(ξ) and ω

γ
λ(ξ)) in the same way as pt(x, y), v1, λ1 and Gξ(x, y) but with γL instead of L.

LEMMA 11. Assume that (Hfp) holds. Let T > 0 and γ ∈ (0,1]. For N large enough,
for all x ∈ [0, γL] and t ∈ [0, T ],

Ex

[
Rγ ([0, tN])]= O(1)(1 ∧ x)

[
e(μ−β)xe[(μ−β)−γ (μ+β)]L + e(μ+β)(x−γL)],

where the O(·) may depend on T but not on x nor on t .

PROOF. It is known (see, e.g., [27], Lemma 5.7) that

Ex

[
Rγ ([0, tN])]=−1

2

∫ tN

s=0

∂

∂y
pγ

s (x, y)|y=γL ds.

In words, this means [27] that the expected number of particles “killed” at γL between times
0 and tN is equal to the integral of the heat flow out of the boundary γL. Given the boundary
condition in (A), the flow out of γL is exactly −1

2
∂
∂y

p
γ
s (x, y)|y=γL.
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Hence, Ex[Rγ ([0, tN])] is an increasing function of t (as expected) and a bound similar
to Remark 5 yields that

Ex

[
Rγ ([0, tN])]≤ Ex

[
Rγ ([0, T N])]≤−1

2
e

∂

∂y
G

γ

(T N)−1(x, y)|y=γL.

Let ξ = 1
T N

and λ(ξ) = λ∞
1 + ξ . We know from (63) that

∂

∂y
G

γ

(T N)−1(x, y)|y=γL = (ωγ
λ(ξ)

)−1
eμ(x−γL)ϕ

γ
λ(ξ)(x)

(
ψ

γ
λ(ξ)

)′
(γL).

We then see from (62) and Lemma 5 that(
ψ

γ
λ(ξ)

)′
(γL) =

√
2λ

γ
1 sinh

(√
2λ

γ
1 (γL− 1)

)−1 = O
(
e−βγL).

By Lemmas 9 and 10, we have(
ω

γ
λ(ξ)

)−1
ϕ

γ
λ(ξ)(x)

= (ωγ
λ(ξ)

)−1
(1 ∧ x)

(
O(1)e−βx +O(ξ)eβx)= (1 ∧ x)

(
O(N)e−βx +O(1)eβx).

Putting all these estimates together, we see that

−1

2

∂

∂y
G

γ

(T N)−1(x, y)|y=γL = O(1)(1 ∧ x)e−(μ+β)γL[e(μ−β)Le(μ−β)x + e(μ+β)x],
which concludes the proof of the lemma. □

COROLLARY 3. Assume that (Hfp) holds. Let T > 0 and γ ∈ (0,
μ−β
2β

]. For N large
enough, for all x ∈ [0, γL] and t ∈ [0, T ],

Ex

[
Rγ ([0, tN])]= O(1)(1 ∧ x)e(μ−β)xe[(μ−β)−γ (μ+β)]L.

PROOF. Note that for γ ≤ μ−β
2β

and x ≤ γL, we have

e(μ+β)x = e(μ−β)xe2βx = O(1)e2βγLe(μ−β)x = O(1)e(μ−β)Le(μ−β)x. □

COROLLARY 4. Let 0 < δ < (
μ−β
2β

)∧ ( 1
2β

(μ−β)2

μ+β
) and γ = μ−β

2β
− δ. Then,

Px

(
Rγ ([0, tN])> 0

)= O
(
N

−(
μ−β
2β

−δ
μ+β
μ−β

))
(1 ∧ x)e(μ−β)x ∀x ∈ [0, γL], t ∈ [0, T ].

PROOF. This follows from Markov’s inequality and the fact that (μ − β) − γ (μ + β) =
(μ− β)(−μ−β

2β
+ δ

μ+β
μ−β

). □

COROLLARY 5. Assume that (Hfp) holds and let x > 0. Then

1

h(0, x)
NPx

(
R1([0, tN])> 0

)→ 0, N →∞,

where h is as in (20).

PROOF. According to Lemma 11, Lemma 5 and Markov’s inequality, it is enough to
prove that

Ne−2βL → 0 and Ne2βxe−(μ+β)L → 0,

as N →∞. The first assertion is a direct consequence of (Hfp). The second convergence is
clear when x is fixed. □
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5. Convergence of moments. From now on, we will assume that (Hfp) holds. In this
section, we will make heavy use of the notation defined in Section 2.4.

5.1. k-Mixing.

PROPOSITION 14. Let (ϕi; i ∈ [k]) be bounded measurable functions and (Xi) be a se-

quence of i.i.d. random variables with density Π∞( dx) = v∞1 (x)2

‖v∞1 ‖2 dx. Under Q̄k,t
x , define

R̄N :=∏
v∈B

r(ζ̄v)h
(|v|N, ζ̄v

) ∏
v∈L

ϕi(ζ̄v).

Then as N →∞,

(75) R̄N ⇒
(

k−1∏
i=1

r(Xi)h
∞(Xi)

)(
k∏

i=1

ϕi

(
Xi+k−1))

in distribution.

PROOF. Let f : [0,∞) → R be a continuous bounded function. Let (u1, . . . , uk−1) ∈
(0, t)k−1 be such that

∀i, j ∈ [k − 1], N |ui − uj | > c12L and N
(
ui ∧ (t − ui)

)
> c12L.

It then follows from Proposition 12 that

∀i, j ∈ [k − 1] : ui < uj ,
∣∣quj−ui

(x, y)−Π(y)
∣∣≤ e−βLΠ(y),

and that

∀i ∈ [k − 1], ∣∣qui
(x, y)−Π(y)

∣∣≤ e−βLΠ(y) and
∣∣qt−ui

(x, y)−Π(y)
∣∣≤ e−βLΠ(y).

We now condition R̄N on the tree structure of the k-spine (see Section 2.4). Corollary 2 shows
that

lim
N→+∞ Q̄k,t

x

(
f
(
R̄N )|(U1, . . .Uk−1) = (u1, . . . , uk−1)

)

=
∫
f

(
k−1∏
i=1

r(xi)h
∞(xi)

k∏
i=1

ϕi(xi+k−1)

)(2K−1∏
i=1

Π∞(dxi)

)
.

Yet, the random variables (Ui) are independent uniforms on [0, t] so that

∀i, j ∈ [k − 1], P
(
N |Ui −Uj | > c12L

)→ 0, P
(
N
(
Ui ∧ (t −Ui)

)
> c12L

)→ 0,

as N tends to ∞. A union bound and the dominated convergence theorem then yield

lim
N→+∞ Q̄k,t

x

(
f
(
R̄N ))= E

[
lim

N→+∞ Q̄k,t
x

(
f
(
R̄N )|U1, . . . ,Uk−1

)]

=
∫
f

(
k−1∏
i=1

r(xi)h
∞(xi)

k∏
i=1

ϕi(xi+k−1)

)(2K−1∏
i=1

Π∞(dxi)

)
,

which concludes the proof of the proposition. □
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5.2. Uniform integrability.

LEMMA 12. Assume that (Hfp) holds. Let T > 0, n ∈N and let

(76) 0 ≤ ε <
3β −μ

n(μ− β)
.

There exists a constant C12 = C12(T , ε, n) such that for sufficiently large N ,

In−1,ε,t (x) :=
∫ t

s=0

∫ L

y=0
h(sN,y)1+εeε(n−1)(μ−β)yq̄s(x, y) dy ds ≤ C12e

εn(μ−β)x,

for all x ∈ [0,L], t ∈ [0, T ].
PROOF. Recall from Lemma 5 that h(sN,y) ≤ 2h(0, y) for N large enough (that only

depends on T ). Using Fubini’s theorem along with Remark 5, we see that

In,ε,T (x) =
∫ t

s=0

∫ L

y=0
h(sN,y)1+εeε(n−1)(μ−β)y

(
h(sN,y)

h(0, x)
psN(x, y)

)
dy ds

≤ 22+ε
∫ T

s=0

∫ L

y=0
h(0, y)1+εeε(n−1)(μ−β)y

(
h(0, y)

h(0, x)
psN(x, y)

)
dy ds

≤ 21+εe
1

N

∫ L

y=0
h(0, y)1+εeε(n−1)(μ−β)y

(
h(0, y)

h(0, x)
G(T N)−1(x, y)

)
dy︸ ︷︷ ︸

=:Jn,ε,T (x)

.

Let ξ = 1
T N

and λ(ξ) := λ∞
1 + ξ . By definition of Gξ (see Section 4.3),

v1(x)Jn,ε,T (x) = (Nωλ(ξ))
−1
(
ψλ(ξ)(x)

∫ x

y=0
h(0, y)1+εeε(n−1)(μ−β)yϕλ(ξ)(y)v1(y) dy

+ ϕλ(ξ)(x)

∫ L

y=x
h(0, y)1+εeε(n−1)(μ−β)yψλ(ξ)(y)v1(y) dy

)

=: (Nωλ(ξ))
−1(ψλ(ξ)(x)A(x)+ ϕλ(ξ)(x)B(x)

)
.

Recalling the definition of h from (6), we see from (Hfp), (76), Lemma 5 and Lemma 9 that

A(x) =
∫ x

y=0
e(μ−2β)y(O(1)e−βy +O(ξ)eβy)eεn(μ−β)y dy

= O(1)

∫ x

y=0
e(μ−3β)yeεn(μ−β)y dy +O(ξ)

∫ x

y=0
e(μ−β)yeεn(μ−β)y dy

= O(1)(1 ∧ x)+O(ξ)(1 ∧ x)e(μ−β)xeεn(μ−β)x,

and remarking that ξe(μ−β)x = O(1) for x ∈ [0,L], we get that

ψλ(ξ)(x)A(x) = (v1(x)+O(ξL)
(
1 ∧ (L− x)

)
e−βx)A(x) = O(1)v1(x)eεn(μ−β)x.

Similarly,

B(x) = O(1)

∫ L

y=x
e(μ−3β)yeεn(μ−β)y dy = O(1)

(
1 ∧ (L− x)

)
e(μ−3β)xeεn(μ−β)x,

so that (using that ξe(μ−β)x = O(1) again)

ϕλ(ξ)(x)B(x) = (1 ∧ x)
(
O(ξ)eβx +O(1)e−βx)(1 ∧ (L− x)

)
e(μ−3β)xeεn(μ−β)x

= O(1)v1(x)eεn(μ−β)x.
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Applying Lemma 10 to ξ = (T N)−1, we get that (ωλ(ξ))
−1 = O(N) so that

Jn,ε,T (x) = O(1)eεn(μ−β)x,

which concludes the proof of the lemma. □

LEMMA 13. Assume that (Hfp) holds. Let k ≥ 1 and T > 0. For all

(77) 0 ≤ ε <
1

(k − 1)∨ 1

3β −μ

μ− β
,

there exists a constant c13 = c13(ε, T , k) > 0 such that

Q̄k,t
x

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)
≤ c13t

−(k−1)eε(k−1)(μ−β)x ∀x ∈ [0,L],∀t ∈ (0, T ].

PROOF. We prove by induction that, for every n ≤ k, there exists a constant cn = cn(ε, T )

such that

(78) Q̄l,t
x

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)
≤ cnt

−(l−1)eε(l−1)(μ−β)x ∀x ∈ [0,L], t ∈ (0, T ],∀l ∈ [n].

For l = 1, we know that

Q̄1,t
x [1] = 1.

Let us now assume that (78) holds for some n ≤ k − 1. We claim that

Q̄n+1,t
x

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)

=
∫ t

0

sn−1

tn
e−(λ∞

1 −λ1)(t−s)
Ex

[
r(ζ̄t−s)h(0, ζ̄t−s)

1+ε

×
k∑

n=1

Q̄
n,s

ζ̄t−s

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)
Q̄

k+1−n,s

ζ̄t−s

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)]

ds.

This formula is an extension of Proposition 9. The proof of this fact is obtained by replacing
the functional F :U∗

k →R by a functional F of the k-spine tree T with depth t of the form

F(T ) =∏
v∈B

h
(|v|, ζv

)ε k∏
i=1

h(t, ζVi
)

and by summing over all the possible sizes for the left and right subtrees in the (n+ 1)-spine.
The proof then goes along the exact same lines.

It follows by induction (see (78)) that

Q̄n+1,t
x

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)
≤ (cn)

2t−nIn−1,ε,t (x).

Finally, we see from Lemma 12 that

Q̄n+1,t
x

(∏
v∈B

h
(|v|N, ζ̄v

)1+ε
)
≤ (cn)

2C12(n, ε, T )t−neεn(μ−β)x.

This concludes the proof of (78) at rank n+ 1. □
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COROLLARY 6. The sequence of r.v.’s(∏
v∈B

r(ζ̄v)h
(|v|N, ζ̄v

)∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕ̃i(ζ̄Vσi
)

h∞(ζ̄Vσi
)

h(tN, ζ̄Vσi
)
,N ∈N

)

from Theorem 4 is uniformly integrable under Q̄k,t
x .

PROOF. Recall that the functions ϕ̃i are compactly supported. Hence, there exists a con-
stant A > 0 such that ϕ̃i ≡ 0 on (A,∞), ∀i ∈ [k]. We know from Lemma 5 that v1 converges
uniformly to v∞

1 on [0,A], v′
1 converges uniformly to (v∞

1 )′ on [0,1] and that v1(x) ≳ x on
[0,1] for L large enough. This implies that, as N →∞,

(79) sup
x∈[0,A]

∣∣∣∣v∞
1 (x)

v1(x)
− 1
∣∣∣∣→ 0.

In particular, we see from (46) that there exists a constant C > 0 such that h∞(y) ≤
Ch(tN,y) for all y ∈ [0,L], so that∣∣∣∣∏

v∈B
r(ζ̄v)h

(|v|N, ζ̄v

)∏
i,j

ψi,j (Uσi,σj
)
∏
i

ϕ̃i(ζ̄Vσi
)

h∞(ζ̄Vσi
)

h(tN, ζ̄Vσi
)

∣∣∣∣≤ C
∏
v∈B

h
(|v|N, ζ̄v

)
.

The result then follows from Lemma 13. □

PROOF OF THEOREM 4. Let A > 0 be as in the proof of Corollary 6. Equations (46) and
(79) show that h∞(·)/h(tN, ·) → 1 uniformly on [0,A] as N →∞. As a consequence, one
can show that the sequence of random variables(∏

v∈B
r(ζ̄v)h

(|v|N, ζ̄v

)∏
i

ϕ̃i(ζ̄Vσi
)

h∞(ζ̄Vσi
)

h(tN, ζ̄Vσi
)
,N ∈N

)

converges weakly to the same limit as R̄N in Proposition 14. Theorem 4 then follows from
Corollary 6. □

6. Survival probability (0th moment). Let L be as in (19) and c̃ as in (6). Define

u(t, x) := Px

(
ZL

t > 0
)
,

and

a(t) :=
∫ L

0
h̃(0, y)u(t, y) dy = c̃

∫ L

0
e−μyv1(y)u(t, y) dy.

This section is aimed at proving Theorem 1. Essentially, we will show that for N large

u(tN,x) ≈ h(0, x)a(tN),

so that the problem boils down to estimating a(tN). Fix 0 < η < T . The idea is to prove that
for N large enough, a satisfies

(80) ȧ(tN) ≈−Σ2

2
a(tN)2 ∀t ∈ [η,T ].

As a consequence,

a(tN) ≈ 1
Σ2

2 (t − η)N + 1
a(ηN)

.

Finally, the result will follow provided that

(81) lim inf
η→0

lim inf
N→∞ ηNa(ηN) > 0.
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6.1. Step 1: Rough bounds. In the remainder of this section, we will often make use of a
union bound that we describe now. We know from the branching property that for all t > 0,

(82) u(tN,x) = Px

( ⋃
v∈NL

L2

{
Z

(v)

tN−L2 > 0
})

,

where Z
(v)
s refers to the number of descendants of the particles v at time L2 + s > 0 in the

particle system XL. Using a union bound and the many-to-one lemma (see Lemma 2), we see
that

u(tN,x) ≤
∫ L

0
pL2(x, y)u

(
tN −L2, y

)
dy.

Proposition 12 along with (20) then shows that∫ L

0
pL2(x, y)u

(
tN −L2, y

)
dy = (1 +O

(
e−βL))e(λ1−λ∞

1 )L2
h(0, x)a

(
tN −L2).(83)

We recall from Lemma 5 that λ1 < λ∞
1 . This implies that for N large enough (that does not

depend on t),

(84) u(tN,x) ≤ (1 +O
(
e−βL))h(0, x)a

(
tN −L2).

LEMMA 14 (Rough upper bounds). Let T > 0. There exist two positive constants γ and
c14 = c14(T ) such that for all η > 0, there exists Ñ = Ñ(T , η) such that, for all N ≥ Ñ , we
have

a(tN) ≤ c14

Nγ
∀t ∈ [η,T ],

and

u(tN,x) ≤ c14
h(0, x)

Nγ
, x ∈ [0,L],∀t ∈ [η,T ].

PROOF. In this proof, the quantities O(·) can depend on T but not on η. We will make
use of the notation defined in the beginning of Section 4.4.

Basically, we prove that, in order to survive a period of time of order N , the BBM has to
reach the level μ−β

2β
L < L. We established in Corollary 4 that the probability to reach this

level is of order (N−γ̃ ) for some γ̃ > 0.

Let 0 < δ < (
μ−β
2β

)∧ ( 1
4β

(μ−β)2

μ+β
) and γ̃ = μ−β

2β
− δ. For all x ∈ [0, γ̃ L], we have

Px

(
ZL

tN > 0
)= Px

(
Z

γ̃L
tN > 0,Rγ̃ ([0, tN])= 0

)+ Px

(
ZL

tN > 0,Rγ̃ ([0, tN])> 0
)

≤ Px

(
Z

γ̃L
tN > 0

)+ Px

(
Rγ̃ ([0, tN])> 0

)
.

The first probability can be bounded by Proposition 12. Indeed, for all x ∈ [0, γ̃ L], we have

Px

(
Z

γ̃L
tN > 0

)≤ Ex

[
Z

γ̃L
tN

]= ∫ γ̃ L

0
p

γ̃
tN(x, y) dy

≤ (1 +O
(
e−βL))e(λ

γ̃
1 −λ∞

1 )tNeμx v
γ̃
1 (x)

‖vγ̃
1 ‖2

∫ γ̃ L

0
e−μyv

γ̃
1 (y) dy.

Lemma 5 yields that
∫ γ̃ L

0 e−μyv
γ̃
1 (y) dy < ∞, ‖vγ̃

1 ‖→ ‖v∞
1 ‖ as N →∞ and that

(85) v
γ̃
1 (x) ≤ C

(
x ∧ 1 ∧ (γ̃ L− x)

)
e−βx ≤ Cv1(x) ∀x ∈ [0, γ̃ L],
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for L large enough so that L − γ̃ L > 1. In addition, it implies that there exists a positive
constant C = C(λ∞

1 ) > 0 such that

e(λ
γ̃
1 −λ∞

1 )tN ≤ exp
(−Cte−2βγ̃Le(μ−β)L)= exp

(−Cte2βδL).
Hence,

(86) Px

(
Z

γ̃L
tN > 0

)= O
(
exp
(−Cηe2βδL))h(0, x), x ∈ [0, γ̃ L].

It then follows from Corollary 4 and (85) that for all x ∈ (0, γ̃ L),

Px

(
Rγ̃ ([0, tN])> 0

)= O
(
N

−(
μ−β
2β

−δ
μ+β
μ−β

))
h(0, x).

Note that the exponential factor in (86) is smaller than any power of N (for N large enough)
so that

(87) Px

(
ZL

tN > 0
)= O

(
N

−(
μ−β
2β

−δ
μ+β
μ−β

))
h(0, x) ∀x ∈ [0, γ̃ L].

Remark that this proves the second part of the lemma for all x ≤ γ̃ L < L. We now establish
an upper bound on a(t) to get a control on u(t, x) for larger values of x.

We split the integral a(tN) into two parts: we see from (87), (20) and (47)

a(tN) =
∫ γ̃ L

0
h̃(0, x)u(tN,x) dx +

∫ L

γ̃L
h̃(0, x)u(tN,x) dx

= O
(
N

−(
μ−β
2β

−δ
μ+β
μ−β

)) ∫ γ̃ L

0
v1(y)2 dy +O(1)

∫ L

γ̃L
e−(μ+β)x dx,

where we bound u(tN,x) by 1 in the second integral. Moreover, note that∫ L

γ̃L
e−(μ+β)x dx = O

(
e−(μ+β)γ̃ L)= O

(
N

−μ+β
μ−β

γ̃ )
.

Finally, since we chose δ < 1
2

(μ−β)2

2β(μ+β)
in the beginning of the proof, we get that for sufficiently

large N ,

a(tN) = O
(
N

−μ−β
4β
) ∀t ∈ [η,T ].

Note that the constant depends on T but not on η.
The upper bound on u follows from (84) (and the remark following the equation). Indeed,

for N large enough, L2 < 1
2ηN and we see from the first part of the result that for N large

enough,

a
(
tN −L2)≤ c14(λ

∞
1 , T )

N
μ−β
4β

.
□

LEMMA 15 (Rough lower bounds). Let 0 < T1 < T2. There exist two positive constants
C1 = C1(λ

∞
1 ), C2 = C2(λ

∞
1 ) and an integer Ñ = Ñ(T1, T2) such that for all N ≥ Ñ , we have

u(tN,x) ≥ C1
h(0, x)

1 + tN
∀x ∈ [0,L],∀t ∈ [T1, T2],

and

a(tN) ≥ C2

1 + tN
∀t ∈ [T1, T2].
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PROOF. The idea of the proof is adapted from [18], Lemma 7.2. Let P̃t
x be the probability

measure absolutely continuous w.r.t. to Px with Radon–Nikodym derivative

dP̃t
x

dPx

= 1

h(0, x)

∑
v∈NL

tN

h(t, xv).

This change of measure combined with Jensen’s inequality yields

Px

(
ZL

tN > 0
)= Ex[1ZL

tN>0] = P̃
tN
x

[
h(0, x)∑

v∈NL
tN

h(tN,xv)

]
≥ h(0, x)

P̃tN
x [∑v∈NL

tN
h(tN,xv)]

.

Yet,

(88) P̃
tN
x

[ ∑
v∈NL

tN

h(tN,xv)

]
=

Ex[(∑v∈NL
tN

h(tN,xv))
2]

h(0, x)
.

Corollary 1 then yields

Ex

[( ∑
v∈NL

tN

h(tN,xv)

)2]
= Ex

[ ∑
v∈NL

tN

h(tN,xv)
2
]
+ 2h(0, x)tNQ2,tN

x

(
r(ζv)h

(|v|N,ζv

))
,

where v refers to the unique branching point in the 2-spine tree of depth tN . The first term
on the RHS of the above can be calculated thanks to Corollary 1:

Ex

[ ∑
v∈NL

tN

h(tN,xv)
2
]
= h(0, x)Q1,tN

x

(
h(tN, ζṽ)

)
,

where ṽ is the unique leaf of the 1-spine at time tN . One can easily check that Q1,tN
x

(h(|v|N,ζṽ)) and Q2,tN
x (r(ζv)h(|v|N,ζv)) are uniformly bounded in x ∈ [0,L] by a con-

stant that does not depend on T1 nor on T2. Putting all of this together, we see that there
exists a constant C1 > 0 such that

lim
N→∞Ex

[( ∑
v∈NL

tN

h(tN,xv)

)2]
≤ C1(1 + tN)h(0, x),

and that C1 does not depend on T1 nor on T2. This equation combined with (88) yields the
first part of the lemma. The second part of the result follows from an integration. □

6.2. Step 2. Comparing a(t) and u(t, x).

LEMMA 16. For all t > 0, we have

ȧ(t) =−
∫ L

0
h̃(0, x)r(x)u(t, x)2 dx +O

(
1

Nα−1

)
a(t).

PROOF. By definition of a(t), we see that

ȧ(t) =
∫ L

0
h̃(0, x)∂tu(t, x) dx.

Yet, u is solution of the FKPP equation

∂tu(t, x) = 1

2
∂xxu(t, x)−μ∂xu(t, x)+ r(x)

(
u(t, x)− u(t, x)2),

u(t,0) = u(t,L) = 0.

(89)
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On the other hand, note that x �→ h̃(0, x) is solution to the ODE

1

2
y′′ +μy′ + r(x)y = (λ1 − λ∞

1
)
y.

An integration by parts then entails

ȧ(t) = (λ1 − λ∞
1
)
a(t) −

∫ L

0
r(x)h̃(0, x)u(t, x)2 dx.

Lemma 5 finally yields the result. □

COROLLARY 7. Let 0 < T1 < T2. Let γ be as in Lemma 14. For N large enough,

∣∣ȧ(tN)
∣∣= O

(
1

Nγ

)
a(tN), t ∈ [T1, T2].

PROOF. Recall from (84) that

u(tN,x) = O(1)h(0, x)a
(
tN −L2)

for N large enough. In addition, we see from Lemma 14 that for any k ∈ N and N large
enough (that only depends on T1, T2 and k), we have

(90) a
(
tN − kL2)≤ c14(T2)

Nγ
.

Thus, the union bound (84), Lemma 16, (20) and Proposition 1 yield

∣∣ȧ(tN)
∣∣= O

(
1

Nα−1

)
a(tN)+O

(
1

Nγ

)
a
(
tN −L2), t ∈ [T1, T2].

Without loss of generality, one can assume that γ < α−1. Hence, using that for N ∈N fixed,
the function t �→ a(t) is decreasing, we see that

(91)
∣∣ȧ(tN)

∣∣= O

(
1

Nγ

)
a
(
tN −L2), t ∈ [T1, T2].

Using the mean value theorem, we then obtain

∣∣a(tN) − a
(
tN −L2)∣∣= O

(
L2

Nγ

)
a
(
tN − 2L2), t ∈ [T1, T2],

so that (91) implies that

∣∣ȧ(tN)
∣∣= O

(
1

Nγ

)
a(tN) +O

(
L2

N2γ

)
a
(
tN − 2L2), t ∈ [T1, T2].

Let k ∈N be such that kγ > 1. Iterating the above estimates, we see that

∣∣ȧ(tN)
∣∣= O

(
1

Nγ

)
a(tN) +O

(
L2(k−1)

Nkγ

)
a
(
tN − kL2), t ∈ [T1, T2].

Note that it suffices to choose N large enough such that kL2/N < T1/2. Then, recall from
Lemma 15 that 1

N
≲ a(tN). This, combined with (90) yields the result. □

COROLLARY 8. Let ε > 0 and 0 < T1 < T2. There exists Ñ = Ñ(ε, T1, T2) such that for
every N ≥ Ñ ,

∀x ∈ [0,L], (1 − ε)h(0, x)a(tN) ≤ u(tN,x) ≤ (1 + ε)h(0, x)a(tN).
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PROOF. It follows from (82) along with Bonferroni inequalities that

u(tN,x) ≥ Ex

[ ∑
v∈NL

L2

Pxv

(
Z

(v)

tN−L2 > 0
)]

− 1

2
Ex

[ ∑
v �=w∈NL

L2

Pxv

(
Z

(v)

tN−L2 > 0
)
Pxw

(
Z

(w)

tN−L2 > 0
)]

≥ Ex

[ ∑
v∈NL

L2

Pxv

(
Z

(v)
tN > 0

)]

− 1

2
Ex

[ ∑
v �=w∈NL

L2

Pxv

(
Z

(v)

tN−L2 > 0
)
Pxw

(
Z

(w)

tN−L2 > 0
)]

.

(92)

Using a similar argument to that used in (83) and (84), we see that

Ex

[ ∑
v∈NL

L2

Pxv

(
Z

(v)
tN > 0

)]= ∫ L

0
pL2(x, y)u(tN,y) dy = (1 +O

(
e−βL))h(0, x)a(tN).

Hence, for N large enough (that only depends on ε), we have

(93) Ex

[ ∑
v∈NL

L2

Pxv

(
Z

(v)
tN > 0

)]≥ (1 − ε)h(0, x)a(tN).

Corollary 1 then yields

Ex

[ ∑
v �=w∈NL

L2

Pxv

(
Z

(v)

tN−L2 > 0
)
Pxw

(
Z

(w)

tN−L2 > 0
)]

(94)

= 2h(0, x)L2Q2,L2

x

[
r(ζv)h

(|v|, ζv

) ∏
i=1,2

u(tN −L2, ζvi
)

h(L2, ζvi
)

]
,

where v is the unique branching point of the 2-spine tree of depth L2 and v1, v2 are its two
leaves. Using (83) and (84) again, we get that for N large enough,

u
(
tN −L2, y

)≤2h(0, y)a
(
tN − 2L2).

On the other hand, h(L2, y) ≥ 1
2h(0, y) for N large enough (see Lemma 5). These upper and

lower bounds, combined with (94) yield

Ex

[ ∑
v �=w∈NL

L2

Pxv

(
N

(v)

tN−L2 > 0
)
Pxw

(
N

(w)

tN−L2 > 0
)]

≤ 16CL2h(0, x)a
(
tN − 2L2)2Q2,L2

x

(
r(ζv)h

(|v|, ζv

))
,

for some C = C(λ∞
1 ) and N large enough. The term Q2,L2

x (r(ζv)h(|v|, ζv)) can be shown to
be uniformly bounded in N and x using the same techniques as in Lemma 13.

We know from Corollary 7 and the mean value theorem that

a(tN) =
(

1 +O

(
L2

Nγ

))
a
(
tN − 2L2),
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so that, for N large enough,

(95) (1 − ε)a(tN) ≤ a
(
tN − 2L2)≤ (1 + ε)a(tN).

Putting this together with (92), (93) and Lemma 14, we get that for sufficiently large N ,

(96) u(tN,x) ≥ (1 − 2ε)a(tN)h(0, x).

The upper bound of the lemma can be obtained in a similar manner, using only the many-to-
one lemma and (95). □

6.3. Step 3. Kolmogorov estimates.

LEMMA 17. Let ε > 0 and 0 < T1 < T2. For N large enough, we have

−Σ2

2
(1 + ε)a(tN)2 ≤ ȧ(tN) ≤−Σ2

2
(1 − ε)a(tN)2, T1 < t < T2,

where Σ is as in Theorem 1.

PROOF. We see from (Hfp) and Lemma 15 that there exists a small δ > 0 such that

(97)
1

Nα−1 = O

(
1

Nδ

)
a(tN).

The result follows from a direct application of Lemma 16 and Corollary 8. □

PROOF OF THEOREM 1. Integrating the inequality in Lemma 17 allows to approximate
a(tN) by the solution of (80) on [ηN,T N]. On the other hand, Lemma 15 yields that (81) is
satisfied. It then follows from Lemma 8 that for all ε > 0 and x > 0, there exists Ñ = Ñ(ε, t)

such that for all N ≥ Ñ ,

(1 − ε)
2h(0, x)

Σ2t
≤ NPx

(
ZL

tN > 0
)≤ (1 + ε)

2h(0, x)

Σ2t
.

It remains to prove that, as N →∞,

N
(
Px

(
ZL

tN > 0
)− Px(ZtN > 0)

)→ 0.

This follows from Corollary 5 remarking that {ZL
tN > 0} = {ZtN > 0} on the event

{R1([0, T N]) = 0}. □

7. Convergence of metric spaces.

7.1. Truncation of marked metric spaces. Recall from Section 2.1 that M refers to the
set of equivalence classes of mmm-spaces. Let M = [X,d, ν] ∈ M. For any measurable set
X′ ⊂ X, we write |X′| = ν(X′ ×E).

DEFINITION 7. The marked Gromov–Prokhorov distance between two elements of M is
defined as

∀[Xi, di, νi] ∈M, dMGP

([X1, d1, ν1], [X2, d2, ν2])= inf
Z,ϕ1,ϕ2

dPr(ϕ1 � ν1, ϕ2 � ν2),

where the infimum is taken over all complete metric spaces (Z, dZ) and over all isomet-
ric embeddings ϕi from Xi to Z, i = 1,2. Finally, dPr is the standard Prokhorov distance
between measures.
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It is now a standard result that the Gromov weak topology is metrisable by the metric
dMGP (see, e.g., [15]).

LEMMA 18. Let (Mn = [Xn,dn, νn];n ≥ 0) be a sequence of random mmm-spaces and
for every n, let X′

n be a closed measurable subset of Xn. Assume that E[|Xn| − |X′
n|]→ 0 as

n → ∞ and that [X′
n, dn, νn] converges to [X∞, d∞, ν∞] in distribution. Then [Xn,dn, νn]

converges in distribution to the same limit.

PROOF. Let ν′
n be the restriction of νn to X′

n ×E. It follows from Definition 7 that

dMGP

([
X′

n, dn, ν
′
n

]
, [Xn,dn, νn])≤ dPr

(
νn, ν

′
n

)
.

By definition of the Prokhorov distance,

dPr

(
νn, ν

′
n

)≤ ∣∣|Xn| −
∣∣X′

n

∣∣∣∣.
The result then follows from Markov’s inequality. □

In the following, we restrict ourself to the case where the mark space is an open set
E ⊆ R+. We also consider an increasing sequence of closed finite sets (Eε, ε > 0) such
that
⋃

ε>0 Eε = E. For every finite mmm space M = [X,d, ν], we define

Xε := {x : (x,m) ∈ X ×Eε

}
and Mε := [Xε,d, ν

]
.

COROLLARY 9. Consider a sequence of finite random mmm-spaces (Mn = [Xn,dn, νn];
n ≥ 0). Assume that lim supε→0 lim supn→∞E[|Xn| − |Xε

n|] = 0. Then

lim sup
ε→0

lim sup
n→∞

dMGP

(
Mε

n,Mn

)= 0 in probability.

PROOF. The argument goes along the same lines as the proof of Lemma 18. □

7.2. Proof of Theorem 2 and 3. For ε ∈ (0,1), set Eε := [ε, 1
ε
] and define M

L,ε
t out of

ML
t by killing all the particles which do not belong to the interval Eε at time t . In other

words, we only keep the particles in Eε at time t , with no ancestor outside of [0,L] on the
time interval [0, t]. We write ν

L,ε
t for the restriction of the sampling measure ν to NL

tN ×Eε .
Finally, M̄

L,ε
t is defined analogously to M̄L

t , by rescaling the total mass of the space and by
accelerating time by N .

PROPOSITION 15. Fix ε > 0 and define

h̃∞
ε (x) := 1x∈Eε h̃

∞(x).

Conditional on {ZtN > 0}, (M̄
L,ε
t ,N ≥ 0) converges in distribution to a marked Brownian

CPP with parameters (t, Σ2

2 h̃∞
ε (x) dx).

PROOF. We follow the heuristics of Section 2.5. Let (ϕ̃i, i ∈ [k]) and (ψi,j , i, j ∈ [k])
be bounded continuous functions. Assume that the ϕ̃i ’s are compactly supported on (0,∞).
Define the polynomial

∀M = [X,d, ν], Ψ̃(M) =
∫ ∏

i,j

1{vi �=vj }ψi,j

(
d(vi, vj )

)∏
i

ϕ̃i(xi)h
∞(xi)ν(dvi ⊗ dxi).
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From Theorem 4, our Kolmogorov estimate (see Theorem 1) and the many-to-few formula
(see Proposition 6), we get that

lim
N→∞Ex

[
Ψ̃
(
M̄L

t

)|ZtN > 0
]= k!

(
Σ2

2
t

)k

E

[∏
i,j

ψi,j (Uσi,σj
)

]∏
i

∫
Π∞(x)ϕ̃i(x) dx.

Let ϕi be a bounded measurable function and consider

ϕ̃i(x) = ϕi(x)1x∈Eε

h∞(x)
.

Note that ϕ̃i is now bounded and compactly supported. It is also continuous on the support of
the measure ν̄ε

t . Define

∀M = [X,d, ν], Ψ ′(M) :=
∫ ∏

i,j

1{vi �=vj }ψi,j

(
d(vi, vj )

)∏
i

ϕi(xi)ν( dvi ⊗ dxi).

Recall that Π∞( dx) = h∞(x)h̃∞(x) dx. The previous limit translates into

lim
N→∞Ex

[
Ψ ′(M̄L,ε

t

)|ZtN > 0
]= k!E

[∏
i,j

ψi,j (Uσi,σj
)

]∏
i

∫
tΣ2

2
h̃∞

ε (x)ϕi(x) dx.

Let us now define

∀M = [X,d, ν], Ψ(M) :=
∫ ∏

i,j

ψi,j

(
d(vi, vj )

)∏
i

ϕi(xi)ν(dvi ⊗ dxi).

From Proposition 2 and Proposition 3, it remains to show that

lim
N→∞

∣∣Ex

[
Ψ
(
M̄

L,ε
t

)−Ψ ′(M̄L,ε
t

)|ZtN > 0
]∣∣= 0.

Hence, it is sufficient to show by induction on k that

lim
N→∞Ex

(∫
1⋃

1≤i<j≤k{vi=vj }
k∏

n=1

ν̄
L,ε
t (dvn ⊗ dxn)|ZtN > 0

)
= 0.

On the one hand,

Ex

[∫
1⋃

1≤i<j≤k{vi=vj }
k∏

n=1

ν̄
L,ε
t (dvn ⊗ dxn)|ZtN > 0

]

≤ ∑
1≤i<j≤k

1

N
Ex

[
k−1∏
n=1

ν̄
L,ε
t (dvn ⊗ dxn)|ZtN > 0

]
.

On the other hand, the RHS vanishes since by induction and the first part of the proof

lim
N→∞Ex

[
k−1∏
n=1

ν̄
L,ε
t (dvn ⊗ dxn)|ZtN > 0

]

= lim
N→∞Ex

[∫
1⋃

1≤i<j≤k−1{vi �=vj }
k−1∏
n=1

ν̄
L,ε
t (dvn ⊗ dxn)|ZtN > 0

]

= k!
(

Σ2t

2

∫
Eε

h̃∞(x) dx

)k

.

This completes the proof of the proposition. □
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PROPOSITION 16. Conditional on the event {ZtN > 0}, M̄L
t converges in distribution for

the Gromov weak topology to the marked Brownian CPP with parameters (t, Σ2

2 h̃∞(x) dx).

PROOF. By observing the moments of Brownian CPPs in Proposition 3, it is clear that
a marked Brownian CPP with parameters (t, Σ2

2 h̃∞
ε (x) dx) converges to a marked CPP with

parameters (t, Σ2

2 h̃∞(x) dx) as ε → 0. Next, a triangular inequality shows that our proposi-
tion boils down to proving that

Conditional on {ZtN > 0}, lim
ε→0

lim
N→∞dMGP

(
M̄

L,ε
t , M̄L

t

)= 0 in probability.

We know from Proposition 15 that, conditional on {ZtN > 0}, 1
N

Z
L,ε
tN converges to an expo-

nential random variable with mean tΣ2

2

∫
Eε

h̃∞(x) dx and by Corollary 9, it remains to show
that

lim sup
ε→0

lim sup
N→∞

1

N
Ex

[
ZL

tN −Z
L,ε
tN |ZtN > 0

]= 0.

Note that

1

N
Ex

[
ZL

tN −Z
L,ε
tN |ZtN > 0

]= 1

NPx(ZtN > 0)

∫
y /∈Eε

ptN(x, y) dy.

Finally, Proposition 12 and Theorem 1 imply that for N large enough, we have

1

N
Ex

[
ZL

tN −Z
L,ε
tN |ZtN > 0

]≤ C

(
h(0, x)

h∞(x)

)∫
y /∈Eε

h̃(0, y) dy.

Equations (20) and (47) yield the result, letting first N →∞, then ε → 0. □

PROOF OF THEOREM 3. By Proposition 16, it is enough to prove that conditional on
{ZtN > 0}, MtN and ML

tN are coupled in such a way that they coincide with a probability
going to 1 as N →∞. In light of Lemma 18 and of our Kolmogorov estimate, it is sufficient
to show that NEx[R1([0, tN])]→ 0 as N →∞. Corollary 5 then yields the result. □

PROOF OF THEOREM 2. This is a corollary of Theorem 3. The proof goes along the
exact same lines as Theorem 2 in [6], where the convergence of the population size and of
the genealogy is deduced from the convergence of the mmm-space to the Brownian CPP. We
recall the main steps of the argument for completeness.

Both maps

[X,d, ν] �→ |X|, [X,d, ν] �→
[
X,d,

ν

|X|
]

are continuous w.r.t. the marked Gromov-weak topology. Recall that conditional on survival,
M̄t converges in the marked Gromov-weak topology. Hence, (i) readily follows from the
fact that the limiting CPP has a total mass exponentially distributed with mean Σ2t

2 (see
Remark 4).

Let us now prove (ii). Let [X,d, ν] be a general random mmm-space. Sample k points
(v1, . . . , vk) uniformly at random with replacement. Let (xv1, . . . , xvk

) be the types of the
sampled individuals. Then E[ψ((d(vi, vj )), (xvi

))] is nothing but the moment of order k of
[X,d, ν

|X| ]. Since, conditional on survival, M̄t converges to a Brownian CPP, (ii) follows from
Proposition 4. □
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